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Overview

The following tables list all available operations and functions by category.

Table 1. Global structure

gensym     Set global variable symbol for polynomial matrices
gprop Set/modify global polynomial properties
pformat Set output format
pinit Initialize the Polynomial Toolbox
checkpb Check conflicts of Polynomial Toolbox variables
pver Polynomial Toolbox version information
pversion Polynomial Toolbox version number
tolerance Set global relative tolerance
userdata Set or return user data of polynomial object
verbose Set global verbose level

Table 2. Polynomial matrix object properties

deg Extract various degrees matrices
lcoef Extract various leading coefficient matrices
lop Create a polynomial matrix object
pol Create a polynomial matrix object
pprop Set/modify properties of polynomial matrix
symbol Set or return variable symbol of polynomial matrix
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Table 3. Convertors

bhf Converts realization (A,B,C) into upper Hessenberg form
bhf2rmf Converts realization into a right coprime PMF
dsp2pol Conversion from DSP format to Polynomial Toolbox format
dss2lmf Descriptor state space to left PMF
dss2rmf Descriptor state space to right PMF
dss2ss Descriptor system to state space system
dssreg Regularization of a standard descriptor plant
lmf2dss Left PMF to descriptor state space
lmf2rat Left PMF to polynomial numerator and denominator matrices
lmf2rmf Left-to-right conversion of PMF
lmf2ss LMF to observer form realization (A,B,C,D)
lmf2tf LMF to Control System Toolbox transfer function
lmf2zpk LMF to Control System Toolbox zero-pole-gain format
lti2lmf LTI object to left polynomial matrix fraction
lti2rmf LTI object to right polynomial matrix fraction
mat2pol Conversion from MATLAB format to Polynomial Toolbox format
new2old Conversion to old polynomial matrix format
old2new Conversion from old polynomial format to new
pol2dsp Conversion from Polynomial Toolbox format to DSP format
pol2mat Conversion from Polynomial Toolbox format to MATLAB format
pol2root Extract zeros and gains of polynomial matrix
rat2lmf Polynomial numerator and denominator matrices to left PMF
rat2rmf Polynomial numerator and denominator matrices to right PMF
reverse Reverse the variable of PMF
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rmf2dss Right PMF to descriptor state space
rmf2lmf Right to left conversion of PMF
rmf2rat Right PMF to polynomial numerator and denominator matrices
rmf2ss RMF to Controller form realization (A,B,C,D)
rmf2tf RMF to Control System Toolbox transfer function.
rmf2zpk RMF to Control System Toolbox zero-pole-gain format
root2pol Construct polynomial matrix from its zeros and gains
ss LMF or RMF to LTI object in state space form
ss2dss State space to descriptor state space model
ss2lmf State space to left matrix fraction conversion
ss2rmf State space to right matrix fraction conversion
sym Conversion from polynomial matrix to symbolic format
tf LMF or RMF to LTI object in transfer function form
tf2lmf Control System Toolbox transfer function to LMF
tf2rmf Control System Toolbox transfer function to RMF
zpk LMF or RMF to LTI object in zero-pole-gain form
zpk2lmf Zero-pole-gain to left matrix fraction
zpk2rmf Zero-pole-gain to right matrix fraction

Table 4. Overloaded operations

char Convert a polynomial object to cell array of strings
ctranspose
(')

Conjugate transposition

display Command window display of polynomial matrix
eq Equality test for polynomial matrices
fliplr Flip a polynomial matrix in left/right direction
flipud Flip a polynomial matrix in up/down direction
horzcat ([,]) Horizontal concatenation of polynomial matrices
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kron Kronecker tensor product of polynomial matrices
ldivide (.\) Left polynomial array divide
minus (-) Binary subtraction of polynomial matrices
mldivide (\) Backslash or left polynomial matrix divide
mpower (^) Matrix power for polynomial matrix
mrdivide (/) Slash or right polynomial matrix divide
mtimes (*) Matrix multiplication of polynomial matrices
ne Inequality test for polynomial matrices
plus (+) Binary addition of polynomial matrices
power (.^) Element-wise power for polynomial matrix
rdivide (./) Right array divide
subsasgn Subscripted assignment for polynomial matrix
subsref Subscripted reference for polynomial matrix
times (.*) Element-wise multiplication
transpose
(.')

Matrix transposition.

uminus Unary minus of polynomial matrix
uplus Unary plus of polynomial matrix
vertcat ([;]) Vertical concatenation of polynomial matrices

Table 5. Overloaded functions

compan Block companion matrix
conj Polynomial matrix complex conjugate
det Compute determinant of square polynomial matrix
det2d Determinant of 2-D polynomial matrix
diag Extract diagonals and create diagonal matrices
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imag Imaginary part of polynomial matrix
inv Inverse of a polynomial matrix
isempty True for empty polynomial matrix
isfinite True for finite elements in polynomial matrix
isinf True for infinite elements in polynomial matrix
isnan True for Not-a-Number in polynomial matrix
isprime True for left or right prime polynomial matrix
isreal True for real polynomial matrix
length Length of vector
lu LU factorization for polynomial matrices
norm Polynomial matrix norms
null Null space of a polynomial matrix
pinv Pseudo-inverse of polynomial matrix
polyval Evaluate a polynomial matrix
prod Product of elements of polynomial matrix
rank Polynomial matrix rank
real Real part of polynomial matrix
roots Find polynomial matrix roots
rot90 Rotate polynomial matrix 90 degrees
shift Shift polynomial matrix
size Polynomial matrix dimensions
sum Sum of elements of polynomial matrix
sylv Create Sylvester matrix of a polynomial matrix
trace Sum of diagonal elements of a polynomial matrix
tril Extract lower triangular part of polynomial matrix
triu Extract upper triangular part of polynomial matrix
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Table 6. Basic functions ( other than overloaded)

adj Adjoint of square polynomial matrix
charact Characteristic vectors of a polynomial matrix
evenpart Return the even part of a polynomial object
hurwitz Create Hurwitz matrix of polynomial objects
inertia Inertia of a polynomial matrix
isfullrank True if polynomial matrix has full rank
isproper True if polynomial matrix fraction is proper
issingular True if polynomial matrix is singular
isstable True if polynomial matrix is stable
isunimod True if polynomial matrix is unimodular
kharit Create Kharitonov polynomials
gram Gramian of polynomial matrix fraction
h2norm H2 norm of a polynomial matrix fraction
hinfnorm H-infinity norm of a polynomial matrix fraction
linvt Linear transform of variable
longldiv Long left polynomial matrix division
longrdiv Long right polynomial matrix division
oddpart Return the odd part of a polynomial object
polfit Fit polynomial matrix element-by-element to data
polpart Polynomial matrix symmetric part extraction
polyder Derivative of a polynomial matrix
prand Generates polynomial matrix with random coefficients
ptopex Extreme polynomials for a polytype of polynomials
pzer Perform zeroing on a polynomial matrix
scale Scale a polynomial matrix
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Table 7. Advanced operations (other than overloaded)

gld Greatest left divisor of polynomial matrices
grd Greatest right divisor of polynomial matrices
ldiv Left polynomial matrix division
llm Least left multiple of polynomial matrices
lrm Least right multiple of polynomial matrices
minbasis Minimal polynomial basis
rdiv Right polynomial matrix division
stabint Stability interval of uncertain polynomial matrices

Table 8. Special matrices

d,p,q,s,v,z
,zi

Create simple basic monomials

mono Create monomial matrix (vector) of current global variable

Table 9. Matrix pencil routines

clements Conversion to Clements standard form
pencan Conversion to real Kronecker canonical form
plyap Solution of the pencil equation AX + YB = C

Table 10. Numerical routines

cgivens1 Calculates Givens rotation
qzord Ordered QZ transformation
schurst Ordered complex Schur decomposition of a matrix
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Table 11. Canonical and reduced forms

colred Column reduced form of a polynomial matrix
diagred Diagonal reduced form of a polynomial matrix
echelon Echelon form of a polynomial matrix
hermite Hermite form of a polynomial matrix
pdg Diagonalization of a polynomial matrix
rowred Row reduced form of a polynomial matrix
smith Smith form of a polynomial object
tri Triangular or staircase form of a polynomial matrix

Table 12. Control routines

debe Deadbeat controllers of discrete-time linear systems
dsshinf H-inf suboptimal compensator for descriptor systems
dssmin Minimize dimension of pseudo state descriptor system
dssrch Search for the optimal solution of a descriptor H-infinity

problem
mixeds Solution SISO mixed sensitivity problem
plqg Polynomial solution of a MIMO LQG problem
pplace Polynomial pole placement
splqg Polynomial solution of a SISO LQG problem
stab Stabilizing controllers of linear systems

Table 13. Equation solvers

axb Solution of  AX = B
axbc Solution of  AXB = C
axbyc Solution of  AX + BY = C
axxab Solution of  A'X + X'A = B
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axyab Solution of  A'X + Y'A = B
axybc Solution of  AX + YB = C
xaaxb Solution of  XA' + AX' = B
xab Solution of  XA = B
xaybc Solution of  XA + YB = C

Table 14. Factorizations

fact Polynomial matrix factor extraction
spcof Polynomial J-spectral co-factorization
spf Polynomial spectral factorization

Table 15. SIMULINK

polblock SIMULINK mdl-file

Table 16. Visualization

khplot Plot of Kharitonov rectangles for interval polynomials
pplot 2-D plot of polynomial matrix
pplot3 3-D plot of polynomial matrix
ptopplot Plot polygonal value sets for polytype of polynomials
zpplot Plot of zero-pole map

Table 17. Graphic user interface

pme Polynomial Matrix Editor
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Table 18. Demonstrations and help

covf Covariance function of an ARMA process
demoB Script file for the demo “Control of a batch process”
demoM Script file for the demo “Polynomial solution of the SISO mixed

sensitivity problem”
minsens Minimum peak sensitivity
poldesk Comprehensive hypertext documentation
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Adjoint and determinant of a square polynomial matrix

Inverse of a square polynomial matrix

[adjA,detA] = adj(A[,tol])

[adjA,detA] = adj(A,'int'[,tol])

[adjA,detA] = adj(A,'def'[,tol])

[num,den] = inv(A[,tol])

[num,den] = inv(A,'int'[,tol])

[num,den] = inv(A,'def'[,tol])

The command

[adjA,detA] = adj(A)

computes the adjoint and the determinant of a square polynomial matrix A. The
adjoint is defined as

adj ( ) ( ) det ( )A s A si j ij= − +1

A sij( ) is the matrix that results by omitting the i-th column and j-th row from A(s). If
A is non-singular and has size n then

Purpose

Syntax

Description
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A s A s I An( )adj ( ) det=

so that

A s
A

A s− =1 1
( )

det
adj ( )

The command

[adjA,detA] = adj(A,'int')

uses fast Fourier transform and interpolation for computing adjA and detA. This is
the default method.

If the command takes the form

[adjA,detA] = adj(A,'def')   

then the algorithm proceeds according to the definition of the adjoint matrix and
uses fast Fourier transform and interpolation for computing the subdeterminants.

The optional input parameter tol defines a local tolerance for zeroing. Its default
value is the global zeroing tolerance. No zeroing is applied if A is a constant matrix.

The command

[num,den] = inv(A)

computes a polynomial matrix num and scalar monic polynomial den such that
num/den is the inverse of A. The command
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[num,den] = inv(A,'int')

uses fast Fourier transform and interpolation for computing num and den. This is
the default method. The command

[num,den] = inv(A,'def')

proceeds according to the definition of the adjoint matrix and uses fast Fourier
transform and interpolation.

The commands

[num,den] = inv(A,tol)

[num,del] = INV(A,method,tol)

work with zeroing specified by the input tolerance tol, while method is 'int' or
'def'. The default value of tol is the global zeroing tolerance. No zeroing is
applied if A is a constant matrix.

Consider

P = [ 1+s    s

        1   s^2 ];   

Then   

[adjP,detP] = adj(P)   

results in

Examples
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adjP =

     s^2    -s

    -1       1 + s

detP =

    -s + s^2 + s^3   

To check the result we calculate

P*adjP

ans =

    -s + s^2 + s^3     0

     0                -s + s^2 + s^3  

It is believed that the matrix

U = [    0        0       0.71

       -0.71     0.71     0

       -0.71    -0.71     0.71*s  ];   

is unimodular. To check this and to compute the inverse of U we issue the
command
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[num,den] = inv(U)   

This yields

num =

     0.7s    -0.7    -0.7

     0.7s     0.7    -0.7

     1.4      0       0

Constant polynomial matrix: 1-by-1

den =

     1   

This confirms that U is unimodular with inverse num. We check the result:

U*num   

Constant polynomial matrix: 3-by-3

ans =

     1     0     0

     0     1     0

     0     0     1   
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With the option 'int' the routine uses fast Fourier transform and interpolation for
computing the adjoint and the determinant.

With the option 'def' the algorithm proceeds according to the definition of the
adjoint matrix and uses fast Fourier transform and interpolation for computing the
subdeterminants.

The macro displays an error messages if the input matrix is not square or if an
unknown option is encountered. A warning message is issued if the interpolation
method leads to constant matrices that very nearly singular.

det determinant of a polynomial matrix

pinv pseudo-inverse of a polynomial matrix

Algorithm

Diagnostics

See also
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axb, xab, axbc

Linear polynomial matrix equation solvers

X = axb(A,B[,tol])

X = axb(A,B,degree[,tol])

X = axb(A,B,'sqz'[,tol])

X = axb(A,B,degrees[,tol])

[X,K] = axb(A,B[,tol])

X = axb(A,B,'syl'[,tol])

X = xab(A,B[,tol])

X = xab(A,B,degree[,tol])

X = xab(A,B,'sqz'[,tol])

X = xab(A,B,degrees[,tol])

[X,K] = xab(A,B[,tol])

X = xab(A,B,'syl'[,tol])

Purpose

Syntax
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X = axbc(A,B[,tol])

X = axbc(A,B,degree[,tol])

X = axbc(A,B,'sqz'[,tol])

X = axbc(A,B,degrees[,tol])

[X,K] = axbc(A,B[,tol])

X = axbc(A,B,'syl'[,tol])

The command

X = axb(A,B)

solves the linear polynomial matrix equation AX = B, where A and B are given
polynomial matrices and X is unknown. If no solution exists then a constant matrix
filled with NaNs is returned.

The command

X = axb(A,B,degree)

finds a solution of degree given by the parameter degree. If degree is not
specified then a solution of minimum overall degree is computed by an iterative
scheme. If  degree is negative then the function directly returns a solution whose
degree equals a computed upper bound.

Description
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The command

X = axb(A,B,'sqz')

seeks a solution X with “squeezed” row degrees. If N is the nullity of A then the
degrees of the N last rows are minimized, at the expense of increasing the degrees
in the other rows.

If degrees is a vector of zeros and ones such that degrees(i) = 1 and degrees(j)
= 0 then the function call

X = axb(A,B,degrees)

attempts to minimize the degree of the ith row in X, provided the degree of the jth
row may increase.

The command

[X0,K] = axb(A,B)

computes besides the minimal-degree solution X0 additionally a polynomial matrix
K whose columns span the right null-space of A. All the solutions to AX = B may
then be parametrized as X KT= +X0 , where T is an arbitrary polynomial matrix
parameter of appropriate size.

A local zeroing tolerance may be specified by an additional input argument such as
axb(A,B,tol). Its default value is the global zeroing tolerance.
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Note: The meaning of the last of three input arguments may vary. An integer is
interpreted as a desired degree while a non-integer is considered as tol. If you
really need to employ an integer tolerance then you must use four input arguments!
Whenever four input arguments are supplied they are strictly required to be in the
order A,B,tol,degrees.

The command

X = axb(A,B,'syl')

solves the equation through the Sylvester matrix method. This is the default
method.

The command

X = xab(A,B)

solves the (other-sided) linear polynomial matrix equation XA = B, where A, B are
given polynomial matrices and X is unknown. The macro works analogously to
axb.

The command

X = axbc(A,B,C)

solves the two-sided linear polynomial matrix equation AXB = C, where A, B, C  are
given polynomial matrices and X is unknown. The macro works as the macros
described above with some differences.

The function call



Commands — Online reference

axb, xab, axbc

X = axbc(A,B,C,'sqz')

seeks a solution X with “squeezed” entry degrees. If N is the nullity of kron(B, A.')
then the degrees of the last N entries of the column vector X(:) are minimized, at
the expense of increasing the degrees in the other entries.

     If degrees is an array of the same size as X such that degrees(i, j) = 1 and
degrees(k,l) = 0 then the function call

X = axbc(A,B,C,'sqz',degrees)

attempts to minimize the degree of the (i, j)th entry of X, provided the degree of the
(k, l)th entry may increase.

The call

[X0,K] = axbc(A,B,C)

besides the minimum-degree solution X0 additionally returns a cell array  K =
{K1, K2, ..., Kp}. The Ki are solutions to the homogeneous equation AXB =
0. All solutions X to the equation AXB = C may be parametrized as

 X t t tp= + + + +X0 K1 K2 Kp1 2 L

where the ti  are arbitrary scalar polynomials.

We consider several examples.Examples
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Example 1 – Divisibility and factor extraction

The polynomial matrix

A = [ 1+s  2*s

      1-s   1  ];

is conjectured to be a left divisor of a matrix

B = [ 1+s+2*s^2  7*s+s^2

          1      3+s-s^2 ];   

To verify this conjecture and to extract the factor, if it exists, type

X = axb(A,B)   

X =

     1     s

     s     3   

The equation is solvable and hence A is a left divisor of B while X is the factor.
Indeed,

A*X-B   

 Zero polynomial matrix: 2-by-2,  degree: -Inf
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ans =

     0     0

     0     0   

As A is square and invertible, the solution is unique.

If we check whether A is perhaps also a right divisor of B then the reply to the
command

xab(A,B)   

 Constant polynomial matrix: 2-by-2

ans =

     NaN     NaN

     NaN     NaN   

is clearly negative.

Example 2 – Equation with a nonsquare A

Consider the 2 3×  matrix

A = [ 1   s   s^2

      2  1+s   s  ];   
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and the 2 2×  matrix

B = [ 1+s^2   s^3

       s^2   1+s^2 ];   

To solve the equation  AX = B for the unknown X just type

X = axb(A,B)   

 X =

     1 + 2s + 3s^2    -s - s^2

    -2 - 5s            1 + 2s

     3                -1 + s

To check that X verifies the equation type

A*X-B   

 Zero polynomial matrix: 2-by-2,  degree: -Inf

ans =

     0     0

     0     0   
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Example 3 – General solution

The equation considered in Example 2 actually has infinitely many solutions. To
retrieve all of them call for the general solution:

[X0,K] = axb(A,B)   

 X0 =

     1 + 2s + 3s^2    -s - s^2

    -2 - 5s            1 + 2s

     3                -1 + s

K =

     s^3

     s - 2s^2

    -1 + s   

X0 is the minimum degree solution but K represents the right kernel of A. Any X  =
X0 + K*T with an arbitrary polynomial matrix T is also a solution. For instance,

Xother = X0+K*[2 s-2]

 Xother =

     1 + 2s + 3s^2 + 2s^3    -s - s^2 - 2s^3 + s^4
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    -2 - 3s - 4s^2            1 + 5s^2 - 2s^3

     1 + 2s                   1 - 2s + s^2    

is a solution. Indeed,

A*Xother-B   

 Zero polynomial matrix: 2-by-2,  degree: -Inf

ans =

     0     0

     0     0  

Example 4 – Minimal and squeezed solution

The solution X0 obtained in Example 3 has the least overall degree among all
solutions, which is 2. Note that the degree of the last row of X equals the degree of
the last row of K, namely 1. This means that there must exist a another solution
whose last row has degree 0 that possibly has an overall degree higher than the
minimal degree 2. Such a solution is called “squeezed,” and may be obtained as

Xsqu = axb(A,B,'sqz')

Xsqu =

     1 + 2s + 3s^2    -s - s^2 - s^3
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    -2 - 5s            1 + s + 2s^2

     3                 0    

Note that the degree of the last row degree has indeed decreased while the overall
degree now is 3.

Example 5 – Visualizing the solution process

The default solution returned by axb possesses a minimum overall degree of X.
Such a particular solution is, in fact, found in a series of steps by searching for
particular solutions within a certain range of degrees. The whole process may be
displayed by setting the verbose level equal to  'yes'.

verbose yes

X = axb(A,B);   

XAB: Seek minimum degree solution.

XAB: Attempt #  1  Degree   1 (Min   1 / Max   5) No.

XAB: Attempt #  2  Degree   3 (Min   1 / Max   5) Yes.

XAB: Attempt #  3  Degree   2 (Min   1 / Max   3) Yes.

XAB: Solve equation with QR factorization.

XAB: A solution of degree 2 was found.   
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The solution equals that found before.

Example 6 – Solution of a prescribed degree

For large matrices of high degree one may wish to shorten the search for the
minimum degree solution. If the desired degree is supplied as input argument then
the macro looks just for a solution of the particular desired degree and then stops
regardless of what has been found. Thus,

X = axb(A,B,1)   

results in

XAB: Seek solution of degree 1.

XAB: Attempt #  1  Degree   1 (Min   1 / Max   5) No.

XAB: No polynomial solution was found.

Constant polynomial matrix: 3-by-2

X =

     NaN     NaN

     NaN     NaN

     NaN     NaN   
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If a negative desired degree is entered then the upper bound on the degree bound
is automatically chosen. This is useful as a fast check for solvability. Thus,

X = axb(A,B,-1)

confirms that the equation is solvable:

XAB: Seek solution of degree 5.

XAB: Attempt #  1  Degree   5 (Min   5 / Max   5) Yes.

XAB: Solve equation with SVD.

XAB: A solution of degree 5 was found.

Polynomial matrix in s: 3-by-2,  degree: 5

X =

  Column 1

     1 + 2s + 3s^2 + 1.2s^3 + 0.52s^4 + 0.2s^5

    -2 - 3.8s - 1.9s^2 - 0.85s^3 - 0.39s^4

     1.8 + 0.67s + 0.33s^2 + 0.2s^3

  Column 2

    -s - s^2 - 0.53s^3 - 0.087s^4 - 0.033s^5
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     1 + 1.5s + 0.98s^2 + 0.14s^3 + 0.065s^4

    -0.47 + 0.55s - 0.054s^2 - 0.033s^3   

For given degrees of the entries of the unknown polynomial matrix X Kronecker
products are used to expand the polynomial equation that needs to be solved into a
(large) set of linear equations in the unknown coefficients. The required degrees
are found by a systematic search depending on the options that are specified.

The macro displays an error messages if

§ The second input argument is missing

§ Invalid Not-a-Number or Infinite entries are found in the input matrices

§ Inconsistent variables are encountered in the input matrices

§ The input matrices have inconsistent dimensions

§ An invalid option is encountered

§ The dimension of the degree index vector is wrong

§ The dimension of the polynomial null space is incorrect

axbyc, axybc, xaybc solution of various types of Diophantine equations

axxab, axyab, xaaxb symmetric and asymmetric equation solvers

Algorithm

Diagnostics

See also
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axbyc, axybc, xaybc

Diophantine equation solvers

[X,Y] = axbyc(A,B,C[,tol])

[X,Y] = axbyc(A,B,C,degree[,tol])

[X,Y] = axbyc(A,B,C,'minx'[,tol])

[X,Y] = axbyc(A,B,C,'miny'[,tol])

[X,Y,R,S] = axbyc(A,B,C[,tol])

[X,Y] = axbyc(A,B,C,'syl'[,tol])

[X,Y] = axybc(A,B,C[,tol])

[X,Y] = axybc(A,B,C,degree[,tol])

[X,Y] = axybc(A,B,C,'minx'[,tol])

[X,Y] = axybc(A,B,C,'miny'[,tol])

[X,Y,R,S] = axybc(A,B,C[,tol])

[X,Y] = axybc(A,B,C,'syl'[,tol])

Purpose

Syntax
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[X,Y] = xaybc(A,B,C[,tol])

[X,Y] = xaybc(A,B,C,degree[,tol])

[X,Y] = xaybc(A,B,C,'minx'[,tol])

[X,Y] = xaybc(A,B,C,'miny'[,tol])

[X,Y,R,S] = xaybc(A,B,C[,tol])

[X,Y] = xaybc(A,B,C,'syl'[,tol])

Diophantine equations with polynomial matrices are a special type of linear
equation. They often arise in control theory and, hence, deserve special attention.
Typically, the polynomial matrix A is square invertible being the “denominator” of
some transfer matrix.

The command

[X,Y] = axbyc(A,B,C)

solves the linear polynomial matrix equation AX + BY = C, where A, B and C are
given polynomial matrices and X and Y are unknown. If no solution exists then
constant matrices X and Y filled with NaNs are returned.

The command

[X,Y] = axbyc(A,B,C,degree)

Description
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finds a solution such that the degree of the composite matrix [X; Y] is given by the
parameter degree. If degree is not specified then a solution of minimum overall
degree is computed by an iterative scheme. If degree is negative then the function
directly returns a solution whose degree equals a computed upper bound.

The commands

[X,Y] = axbyc(A,B,C,'minx')

[X,Y] = axbyc(A,B,C,'miny')

determine a solution (X, Y) with minimum degree of X or Y, respectively.

The command

[X0,Y0,R,S] = axbyc(A,B,C)

computes besides the minimal-degree solution (X0,Y0) additionally the right null
space of [A B], so that all solutions to AX + BY = C may be parametrized as

X = X0 + RT

Y = Y0 + ST

T is an arbitrary polynomial matrix parameter of appropriate dimensions.

A local zeroing tolerance may be specified by an additional input argument such as
axbyc(A,B,C,tol). Its default value is the global zeroing tolerance.
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Note: The meaning of the last of four input arguments may vary. An integer is
interpreted as a desired degree while a non-integer is considered as tol. If you
really need to employ an integer tolerance then you must use five input arguments!
Whenever five input arguments are supplied they are strictly required to be in the
order A,B,C,tol,degrees.

The command

[X,Y] = axbyc(A,B,C,'syl')

solves the equation through the Sylvester matrix method. This is the default
method.

The command

[X,Y] = xabyc(A,B,C)

solves the (other-sided) linear polynomial matrix equation XA + BY = C, where A, B
and C are given polynomial matrices and X and Y are unknown. The macro works
analogously to axbyc.

The command

X = axybc(A,B,C)

solves the two-sided linear polynomial matrix equation AX + YB = C, where A, B, C
are given polynomial matrices and X and Y are unknown. The macro works as the
macros described above with some differences.

The function call
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[X,Y] = axybc(A,B,C,'min')

seeks a solution such that the degrees of the N last entries of the column vector Z
= [X(:); Y(:)] are minimized, where N is the nullity of the matrix [kron(I, A) kron(B.',
I)].

When degrees is a vector of the same length as Z such that degrees(i) = 1 and
degrees(j) = 0 then the function call

[X,Y] = axybc(A,B,C,'min',degrees)

attempts to minimize the ith entry degree in Z provided the jth entry degree may
increase.

The command

[X0,Y0,R,S] = AXYBC(A,B,C)

returns besides the minimum degree solution (X0, Y0) also two cell arrays R =
{R1, R2, ..} and S = {S1, S2, ..} such that the Ri and Si are solutions
to the homogeneous equation AR + SB = 0. All solutions to equation AX + YB = C
may be parametrized as

X t t t

Y t t t

p

p

= + + + +

= + + + +

X0 R1 R2 Rp

Y0 S1 S2 Sp

1 2

1 2

L

L

where the ti  are arbitrary scalar polynomials.
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Example 1 – Scalar Diophantine equation

Consider three scalar polynomials

a = -1+z^2;

b = z;

c = 1-2*z;  

The scalar Diophantine equation may straightforwardly be solved by the command

[x,y] = axbyc(a,b,c)   

 Constant polynomial matrix: 1-by-1

x =

    -1

y =

    -2 + z   

The same result is obtained by the other macros:

[x,y] = xaybc(a,b,c)   

Constant polynomial matrix: 1-by-1

x =

Examples
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    -1

y =

    -2 + z  

[x,y] = axybc(a,b,c)

 Constant polynomial matrix: 1-by-1

x =

    -1

y =

    -2 + z  

All solutions of the equation may be constructed with the help of the command

[x0,y0,r,s] = axbyc(a,b,c)   

Constant polynomial matrix: 1-by-1

x0 =

    -1

y0 =

    -2 + z
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r =

    -z

s =

    -1 + z^2   

Choosing the arbitrary parameter t equal to 1 we obtain

t = 1; x = x0+r*t, y = y0+s*t      

x =

    -1 – z

y =

    -3 + z + z^2   

Example 2 – Solutions of minimum degree in X or Y

By default, the Diophantine equation solvers return a solution of minimal overall
degree of [X; Y]. If the degree of the right hand side C is high then one may further
minimize the degree of either X or Y while possibly increasing the degree of the
other. Consider

clear, gprop s, a = 1+s; b = s; c = 1-s^2;    

and solve     
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[x,y] = axbyc(a,b,c)   

x =

     1 - 0.67s

y =

    -0.33 - 0.33s   

Besides this default solution with minimum overall degree 1 there also exists a
solution with lower and indeed minimal degree of y:

[x1,y1] = axbyc(a,b,c,'miny')

 x1 =

     1 – s

Zero polynomial matrix: 1-by-1,  degree: -Inf

y1 =

     0   

In turn there also is a solution with minimum degree of x:

[x2,y2] = axbyc(a,b,c,'minx')

 Constant polynomial matrix: 1-by-1
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x2 =

     1

y2 =

    -1 - s  

Example 3 – Matrix Diophantine equation

Consider the matrices

clear, gprop z

A = [ z^2   0

       0    z ];

B = [  1    0

       z    0

       0    1 ];

C =  [ z^2  -1

        0    z ];

and solve the one-sided equation

[X,Y] = xaybc(A,B,C)  
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 Constant polynomial matrix: 2-by-2

X =

     1     0

     0     1

Constant polynomial matrix: 2-by-3

Y =

     0     0    -1

     0     0     0   

To obtain a general solution, type

[X0,Y0,R,S] = xaybc(A,B,C)

 Constant polynomial matrix: 2-by-2

X0 =

     1     0

     0     1

Constant polynomial matrix: 2-by-3

Y0 =
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     0     0    -1

     0     0     0

Constant polynomial matrix: 3-by-2

R =

     0     0

    -1     0

     0    -1

S =

     z    -1     0

     0     z     0

     0     0     z   

All solutions are given by

X = X0 + TR

Y = Y0 + TS

with T an arbitrary 2 3×  polynomial matrix.
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After suitable preparation the macros call the routines xab or axbc.

The macros display error messages if

§ not enough input arguments are provided

§ Not-a-Number or Infinite entries are encountered in the input matrices

§ the input matrices have inconsistent dimensions

axb,xab,axbc linear polynomial matrix equations

axxab, axyab, xaaxb symetric and asymmetric equation solvers

Algorithm

Diagnostics

See also
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axxab, axyab, xaaxb

Symmetric and asymmetric polynomial equation solvers

X = axxab(A,B[,tol])

X = axxab(A,B,'syl'[,tol])

X = axxab(A,B,'tri'[,tol])

X = axxab(A,B,coldeg[,tol])

X = axxab(A,B,'red'[,tol])

X = xaaxb(A,B[,tol])

X = xaaxb(A,B,'syl'[,tol])

X = xaaxb(A,B,'tri'[,tol])

X = xaaxb(A,B,rowdeg[,tol])

X = xaaxb(A,B,'red'[,tol])

[X,Y] = axyab(A,BL,BR[,tol])

Purpose

Syntax
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[X,Y] = axyab(A,BL,BR,'syl'[,tol])

[X,Y] = axyab(A,BL,BR,'red'[,tol])

The command

X = axxab(A,B)

solves the bilateral symmetric matrix polynomial equation

 ′ + ′ =A X X A B

where B is a para-Hermitian polynomial matrix.

In the continuous-time case, that is, if the variable of A and B is s (or p), then B is
para-Hermitian if

B s B sT( ) ( )= −

and B is provided to axxab as it is.

In the discrete-time case, that is, if the variable of A and B is z (or q, d or z−1) then
B is para-Hermitian if

B z B zT( ) ( / )= 1

The matrix B is not a polynomial matrix (except in the trivial case that it is a
constant matrix) but has the form

B z B z B z B z B B z B zd
T d

d
T d T

d
d( ) = + + + + + + +−

−
− + −

1
1

1
1

0 1L L

Description
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It needs to be to be supplied to the macro axxab in the polynomial form

B z z B zd( ): ( )=

The degree offset d is evaluated upon cancellation of the leading and trailing zero
matrix coefficients. If there are no zero coefficients then the degree offset is
deg(B/2).

The command

X = axxab(A,B,'syl')

solves the equation with the Sylvester matrix method. This is the default method. It
can be used with the following modifiers:

§ In the form

X = axxab(A,B,'tri')

the macro returns a solution with upper-triangular columnwise leading
coefficient matrix (in the continuous-time case) or upper-triangular absolute
coefficient matrix (in the discrete-time case).

§ In the continuous-time case the command

X = axxab(A,B,coldeg)

computes a solution X with column degrees coldeg. By default,

coldeg(i) = max(deg(B)-deg(A),0)
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for all column indices i. This option is not available for the discrete-time case,
where the macro always computes a solution X of degree

        deg(X) = max(deg(A),deg(B)).

The command

X = axxab(A,B,'red')

solves the equation with polynomial reductions, which is a version of the Euclidean
division algorithm for polynomials. In the continuous-time case the macro computes
a solution with upper-triangular columnwise leading coefficient and such that XA−1

is proper under the assumptions that A is stable and

A BA
T− −1 1e j

is biproper. In the discrete-time case the macro computes a solution X such that its
zero coefficient matrix is upper-triangular under the assumption that A is stable.

If there is no solution of the specified degree then all the entries in X are set equal
to NaN.

An optional tolerance tol may be specified as an additional input argument. Its
default value is the global zeroing tolerance.

The command

X = xaaxb(A,B)
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works very similarly to axxab except that it solves the symmetric equation

XA AX B′ + ′ =

with B para-Hermitian.

The command

 [X,Y] = axyab(A,BL,BR)

solves the scalar polynomial equation

 ′ + ′ = ′ +A X Y A BL BR

for given polynomials A, BL and BR. A needs to be stable. In the discrete-time case
a solution always exists and if in the continuous-time case

max(deg(BL),deg(BR)) ≤  deg(A)

then a solution always exists and the polynomials X and Y are such that
max(deg(X),deg(Y)) ≤  deg(A). The command

[X,Y] = axyab(A,BL,BR,'syl')

uses the Sylvester matrix algorithm. This is the default method. The algorithm of

 [X,Y] = axyab(A,BL,BR,'red')

uses the polynomial reduction algorithm, which is a version of the Euclidean
division algorithm for polynomials.
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Let

A = [-8+s      1

     6+6*s     1 ];   

B = [   100-37*s^2    -2-7*s

    -2+7*s             2       ];   

Then

X = axxab(A,B)   

yields

X =

    -4 + 0.5s     0.5

     3 + 3s       0.5   

In the version

X = axxab(A,B,'tri')   

the result is

X =

    -3.9 + 18s     0.51 - 1.7s

Examples
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     3.1           0.49 + 0.28s   

Next consider the asymmetric scalar discrete-time equation

( ) ( ) ( )( )
( ) ( ) ( ) ( )

2 2 4 9 1 1 7 31 2 1 2+ + ′ + = + + + + +−

′

− −

′
z X z Y z z z z z z

A z A z z z
1 24 34 123 1 244 344 1 244 344

BL BR

It may be solved with the commands

A = 2+z; BL = 4+9*z+z^2; BR = 1+7*z+3*z^2;   

[X,Y] = axyab(A,BL,BR)   

This yields

X =

    -1.2 + 2.8z + 1.5z^2

Y =

    -0.17 + 4.8z + 0.5z^2   

The Sylvester algorithm for the continuous-time symmetric matrix case is described
in Henrion and Sebek (1998c) and for the discrete-time case in Henrion and Sebek
(1998d). By using Kronecker products and equating the coefficients of like powers
of a set of linear equations is obtained and solved for the unknown coefficients.
The solution of the asymmetric scalar equation follows similarly (Stefanidis et al.,
1992).

Algorithm
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Jezek and Kucera (1985) describe the reduction algorithm. In the symmetric matrix
case, the equation is postmultiplied by the adjoint of A and premultiplied by the
transpose of this adjoint. This results in a set of scalar symmetric polynomial
equations, which are solved by the Euclidean algorithm. By successive
substitutions (the forward path of the Euclidean division algorithm) the degrees of
the polynomials are decreased until zero. Then the constant scalar problem is
directly solved and by performing backward substitutions a solution of the original
equation is found. The solution of the scalar asymmetric equation by the reduction
method follows similarly.

The macros axxab and xaaxb issue error messages under the following
conditions:

§ The second input argument is missing

§ Invalid Not-a-Number or Inf entries are found in the input matrices

§ The input matrices have inconsistent dimensions

§ An invalid option or input argument is encountered

§ Various assumptions on the input are not satisfied

§ The algorithm fails in one of several ways

The macro axyab displays an error message if

§ The number of input arguments is invalid

Diagnostics
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§ The input polynomials have inconsistent variables

§ Invalid Not-a-Number or Inf entries occur in the input polynomials

§ The input arguments are not scalar polynomials

§ An invalid option or input argument is encountered

§ The first input polynomial is not strictly stable

axb, axbc, xab,

axbyc, axybc, xaybc

linear polynomial equation solversSee also
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bhf, bhf2rmf

Convert the controllable part of a state space realization to upper block
Hessenberg form.

Obtain a right coprime polynomial matrix fraction description of a minimal state
space realization in upper block Hessenberg form.

[F,G,H,bsizes] = bhf(A,B,C[,tol])

[N,D] = bhf2rmf(F,G,H,bsizes)

The function call

[F,G,H,bsizes] = bhf(A,B,C)

converts a state space realization &x Ax Bu= + , y Cx= , into upper block
Hessenberg form. The controllable part of the system (A, B, C) is returned as the
system (F, G, H), where F is an upper block Hessenberg matrix. G has nonzero
elements in its first m rows only, where m is the rank of B. The vector bsizes
contains the sizes of the different blocks of the matrix F. The optional input
parameter tol is a tolerance that is used in determining the block sizes.

The function
[N,D] = bhf2rmf(F,G,H,bsizes)

constructs a right coprime polynomial matrix fraction represention of a minimal
state space realization in upper block Hessenberg form.

Purpose

Syntax

Description
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The routines are called by ss2rmf and ss2lmf.

Let

A = [ 0 1 4 0 0 0 0 0

      3 0 0 0 0 0 0 1

      0 0 3 0 0 0 0 1

      4 0 0 1 0 0 0 0

      0 0 0 0 1 0 0 0

      0 0 0 0 0 0 0 0

      0 0 0 1 0 1 0 0

      1 0 0 0 1 0 0 1 ];

B = [ 1 1 0

      0 0 0

      0 0 1

      0 0 0

      0 0 0

      0 0 0

Examples
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      0 0 0

      0 1 0 ];

C = [ 0 0 0 0 0 0 1 1 ];   

The command

[F,G,H,bsizes] = bhf(A,B,C)   

returns

F =

    3.0000   -1.0000    0.0000   -0.0000    0.0000   -

0.0000

   -0.0000    1.0000   -1.0000    0.0000    0.0000   -

0.0000

    4.0000   -0.0000    0.0000   -1.0000         0
0.0000

    0.0000    1.0000   -3.0000    0.0000    0.0000   -

0.0000

    0.0000   -0.0000    4.0000         0    1.0000   -

0.0000
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   -0.0000   -0.0000    0.0000   -0.0000   -1.0000   -

0.0000

G =

    0.0000   -0.0000    1.0000

    0.0000   -1.0000   -0.0000

    1.0000    1.0000    0.0000

         0   -0.0000         0

         0         0         0

         0    0.0000         0

H =

   -0.0000   -1.0000    0.0000   -0.0000         0   -

1.0000

bsizes =

     3     2     1   

This minimal state space realization in upper block Hessenberg form may be
converted into a right coprime matrix fraction by the command

[N,D] = bhf2rmf(F,G,H,bsizes)   
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It yields

N =

    -1 - 0.75s + 0.75s^2         -s              0

D =

    -0.5s + 1.5s^2 - s^3         1 - s + s^2    -4

     0.5s - 1.3s^2 + 0.75s^3     s - s^2         0

     0.75s - 0.75s^2             s              -3 + s   

The algorithm for bhf and bhf2rmf is described in Strijbos (1995, 1996). Using a
sequence of Householder transformations (see hhl and hhr) the matrix A is
brought into block Hessenberg form and the uncontrollable part of the system is
removed.

The macros display no error messages

ss2lmf, ss2rmf conversion from state space representation to left and
right matrix fraction representation

Algorithm

Diagnostics

See also
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cgivens1

Complex Givens rotation

[c,s] = cgivens1(x,y)

Given two complex numbers x and y the function
[c,s] = cgivens1(x,y)

computes a real number c and a complex number s such that the matrix

c s

s c− ′
L
NM

O
QP

is unitary and

c s

s c

x

y

z

− ′
L
NM

O
QP
L
NM
O
QP =

L
NM
O
QP0

Here z is an arbitrary complex number.

First we consider

[c,s] = cgivens1(1,i)   

c =

    0.7071

Purpose

Syntax

Description

Examples
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s =

        0 - 0.7071i   

Next

[c,s] = cgivens1(0,0)   

c =

     1

s =

     0   

The numbers c and s are computed as follows.

• If x is nonzero then

c
x

x y
s

cy
x

=
+

=
′

′
| |

| | | |
,

2 2

• If x = 0 and y is nonzero then c = 0 and s = 1.

• If x = 0 and y = 0 then the Givens rotation is not well-defined. The µ-Tools
MATLAB toolbox implementation of the complex Givens rotation chooses c = 0
and s = 1. A better choice is c = 1 and s = 0.

Algorithm
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The macro displays no error or warning messages.

qzord Ordered QZ transformation

Diagnostics

See also
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Convert a polynomial object to strings

str = char(P)

str = char(P,N)

The command

str = char(P,N)

converts the scalar polynomial P to a string str where each coefficient is
expressed with N significant digits.

The default

char(P)

is similar to char(P,4) but with a precision of roughly 4 digits and an exponent if
required.

If P is a polynomial matrix then the result is a cell array of the same dimension as P
consisting of strings that correspond to the entries of P. Each scalar coefficient is
taken with a precision of at most N digits.

The command

char(P,format)

Purpose

Syntax

Description
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works like char(P,N) but uses the format string format for each scalar
coefficient (see sprintf for details). The command

char(P,'rat')

is a special case of char(P,format) and uses rational aproximations of the
coefficients.

The command

char(1+4/3*s)   

returns

ans =

 1 + 1.3333s   

while the command
char(1+4/3*s,8)

yields

ans =

 1 + 1.3333333s   

On the other hand,

char(1+4/3*s,'rat')

results in

Examples
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ans =

 1 + 4/3*s   

Finally,

char([1+2*s 3*s^2])   

yields

ans =

    ' 1 + 2s'    ' 3s^2'   

The macro uses standard MATLAB 5 operations.

The macro displays an error message if the macro does not have enough input
arguments.

display display a polynomial matrix

Algorithm

Diagnostics

See also
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Characteristic vectors of a polynomial matrix

[V,n,g] = charact(P,z[,tol])

Given a square polynomial matrix P and a complex number z, the command

[V,n,g] = charact(P,z)

returns a cell array V of generalized right characteristic vectors of P associated with
the zero z. The zero z has algebraic multiplicity n and geometric multiplicity g.

If z has algebraic multiplicity n = m1 + m2 + ... + mg then there are n nonzero
generalized characteristic vectors V{1,1:m1}, V{2,1:m2}.., V{g,1:mg}. The vectors
are ordered into g chains V{i, :}, i = 1, 2, …, g, each of length mi and such that m1
≥  m2 ≥  ... ≥  mg. The first vectors in each chain, that is, the vectors V{i,1}, i = 1, 2,
…, g, are linearly independent.

Let P[k] denote the kth derivative of P evaluated at z. Then the characteristic
vectors in chain number i satisfy

0 = P[0]*V{i,1}

0 = P[0]*V{i,2}  + P[1]*V{i,1}

...

Purpose

Syntax

Description
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0 = P[0]*V{i,mi} + P[1]*V{i,mi-1} + … + P[mi-1]*V{i,1}/(mi-1)!

If z is not a zero of P then V is empty and n = g = 0.

A tolerance tol may be specified as an additional input argument. Its default value
is the global zeroing tolerance.

Consider

P = [     -1+s        -2+2*s

      3-6*s+3*s^2   4-8*s+4*s^2 ];   

We first compute the roots of P according to

roots(P)   

This yields

ans =

   1.0000

   1.0000 + 0.0000i

   1.0000 - 0.0000i   

It looks as if there is a triple root at 1. Typing

[V,n,g] = charact(P,1)   

Examples
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results in

V =

    [2x1 double]    [2x1 double]

    [2x1 double]              []

n =

     3

g =

     2   

Apparently this root has algebraic multiplicity 3 and geometric multiplicity 2. The
two chains of generalized eigenvectors are retrieved as

V{1,:}   

ans =

    -2

     1

ans =

     0
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     1   

and

V{2,:}   

ans =

     1

     0

ans =

     []   

The algorithm is based upon successive extractions by cef and nullref of a
basis in column echelon form for the right null-spaces of the constant Toeplitz
matrices

T P

T
P P

P

T

P P P

P P

P

T

0

1

2

3

0

0 1

0 0

0 1 2 2

0 0 1

0 0 0

=

=
L
NM

O
QP

=
L

N
MMM
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Q
PPP

=

[ ]

[ ] [ ]

[ ]

[ ] [ ] [ ] / !

[ ] [ ]

[ ]

LL

Algorithm
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P[k] denotes the kth order derivative of P(s) evaluated at the zero z. For a detailed
description of the algorithm see Henrion and Sebek (1998e).

The macro issues error messages under the following conditions:

§ The input matrix is not square

§ The second input argument is missing

§ An invalid second input argument is found

§ The input matrix is singular

§ An invalid zero characteristic vector is obtained

fact polynomial matrix factor extraction

roots                 roots of a polynomial matrix

Diagnostics

See also
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checkpb, pver, pversion

Check conflicts of Polynomial Toolbox variables with existing variables

Polynomial Toolbox version information

Polynomial Toolbox version number

T = checkpb

checkpb

pver

pversion

The command

T = checkpb

returns

• T = [] if the Polynomial Toolbox is set correctly

• T = 1 if the Polynomial Toolbox is not initialized or the global property structure
is incorrect

• T = 2 if the global property variable has an incorrect value

Purpose

Syntax

Description
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• T = 3 if the global property tolerance has an incorrect value

• T = 4 if the global property verbose has an incorrect value

• T = 5 if the global property format has an incorrect value

• T = 6 if any of the variables s, p, zi, d, z, q or v already exists and the
polynomial function of the same name is not active

If there are several problems at the same time then the macro returns a vector of
“error codes” as listed. If checkpb is called without output argument then it
displays a status message.

The command

pver

displays the current Polynomial Toolbox version number.

 The call

pversion

returns a string containing the Polynomial Toolbox version number, while

[V,D] = pversion

also returns the version release date.
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After typing

clear all   

the command

checkpb   

results in

*Global property structure incorrect. Use PINIT!

The situation is corrected by typing

pinit; checkpb

Polynomial Toolbox initialized. To get started, type one of

these: helpwin  or poldesk.  For product information, visit

www.polyx.com  or  www.polyx.cz.

*Polynomial Toolbox is correctly set.

The default definition of the indeterminate variables is disturbed by a command
such as

s = 1;   

Typing

Examples
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checkpb

now produces the message

*Polynomial function s is not active.

   Clear or rename the variable s to activate the function.

From the command

pver

-----------------------------------------------

POLYNOMIAL TOOLBOX  Version 2.0 Beta on PCWIN

-----------------------------------------------   

we obtain the version information, while

pversion   

ans =

2.0 Beta   

displays the version number only.

The macros use standard MATLAB 5 commands.

The macros return error messages if the input is inappropriate.

Algorithm

Diagnostics
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checkpb, pver, pversion

pinit Initialize the Polynomial ToolboxSee also
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clements

Transformation of a para-Hermitian pencil to Clements form

[C,u,p] = clements(P)

[C,u,p] = clements(P,q)

[C,u,p] = clements(P,q,tol)

The command

[C,u,p] = clements(P,q,tol)

transforms the para-Hermitian nonsingular real pencil P(s) = sE + A to Clements
standard form C according to

C(s) = u(sE + A)u
T
 = se + a

The pencil sE + A is assumed to have no finite roots on the imaginary axis.

The matrix u is orthogonal. The pencil C has the form

C s se a

se a

a se a

se a se a se aT T T T
( ) = + =

+
+

− + − + +

L

N
MMM

O

Q
PPP

0 0

0
1 1

2 3 3

1 1 3 3 4 4

Purpose

Syntax

Description
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The pencil se a1 1+  has size p p×  and its finite roots have strictly positive real
parts. The matrix a2  is diagonal with the diagonal entries in order of increasing
value.

If the optional input argument q is not present then a2  has the largest possible
size. If q is present and the largest possible size of a2  is greater than q q×  then –
if possible – the size of a2  is reduced to q q× . Setting q = Inf has the same
effect as omitting the second input argument.

The optional input parameter tol = [tol1  tol2] defines two tolerances. The
tolerance tol1 is used in determining whether a generalized eigenvalue of the
pencil is infinite. Its default value is 1e-12. The tolerance tol2 is used to test
whether the pencil has roots on the imaginary axis. It also has the default value
1e-12.

If the pencil has eigenvalues on the imaginary axis then the function returns p = -
Inf, e = E, a = A, and u the unit matrix.

We consider the computation of the Clements form of the para-Hermitian pencil

P s

s

s
( )

.

. .
=

−
− −

− −

L

N

MMMM

O

Q

PPPP

100 0 01 0

0 01 0 01 0 1

0 1 0

0 1 0 0

We first input this matrix as

P = [100 -0.01 s 0; -0.01 -0.01 0 1;-s 0 -1 0;0 1 0 0];   

Example
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and next compute its Clements form:

[C,u,p] = clements(P);   

We have

p, C = pzer(C)  

p =

     1

C =

     0       0                    0               -10 + s

     0      -1.005                0               -3.5e-005-

0.0007s

     0       0                    0.9950          -0.014+0.00071s

  -10 - s   -3.5e-005+0.0007s   -0.014-0.00071s   99

We see that

se a s a1 1 210
1005 0

0 0 9950
+ = − =

−L
NM

O
QP,

.

.

Next we attempt to reduce a2  to the smallest possible size:
[C,u,p] = clements(P,0);  
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p, C = pzer(C)   

p =

     2

Polynomial matrix in s: 4-by-4,  degree: 1

C =

  Columns 1 through 3

     0        0                     0

     0        0                     1

     0       1                     -0.01

    -10-s    -0.01-4.9751e-006s    -0.0099005-0.00099502s

  Column 4

    -10 + s

    -0.01 + 4.9751e-006s

    -0.0099005 + 0.00099502s

     99
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We now have

se a
s

s1 1 6
0 10

1 4 9751 10 0 01
+ =

−
× −

L
NM

O
QP−. .

while a2  is the empty matrix.

The algorithm is described in Clements (1993) and in slightly more detail in
Kwakernaak (1998).

The macro displays error messages in the following situations:

• The input matrix is not a square pencil

• The input matrix is not real

• The input pencil is not para-Hermitian

• The input parameter tol is not a 1 2×  vector

A warning message is issued if the relative residue exceeds 1e-6. The “relative
residue” is the norm of the juxtaposition of the (1,1) and (1,2) blocks of C divided by
the norm of P. If verbose mode is switched on then a warning is issued if the pencil
has roots on the imaginary axis and the relative residue is reported.

dsshinf H∞ -suboptimal compensators for descriptor systems

Algorithm

Diagnostics

See also
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colred, diagred, rowred

Column, row and diagonally reduced forms of a polynomial matrix

[D,rk,U,Ui] = colred(A[,tol])

[D,rk,U,Ui] = colred(A,'ref'[,tol])

[D,rk,U,Ui] = colred(A,'bas'[,tol])

[D,rk,U,Ui] = rowred(A[,tol])

[D,rk,U,Ui] = rowred(A,'ref'[,tol])

[D,rk,U,Ui] = rowred(A,'bas'[,tol])

[D,U,Ui] = diagred(B[,tol]) 

The command

[D,rk,U,Ui] = colred(A)

brings the polynomial matrix A into column reduced form D = AU, where U is a
unimodular matrix. The columns of D are arranged according to decreasing
degrees. If the input matrix A does not have full column rank then it is  reduced to
the form

D = [ D0  0 ]

Purpose

Syntax

Description
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with D0 column reduced. The scalar rk returns the number of non-zero columns in
D. Ui is the inverse of U.

The command

[D,rk,U,Ui] = rowred(A)

brings the polynomial matrix A into row reduced form D = UA, where U is a
unimodular matrix. The rows of D are arranged according to decreasing degrees. If
the input matrix A does not have full row rank then it is  reduced to the form

D =
L
NM

O
QP

D0

0

with D0 row reduced. The scalar rk returns the number of nonzero rows in D, and
Ui is the inverse of U.

Both for colred and rowred the default method 'ref' is by repeated extraction
of factors. A second method 'bas' is based on the calculation of a minimal basis.

An optional tolerance tol may be specified as an additional input argument. Its
default value is the global zeroing tolerance.

If Z is a continuous-time para-Hermitian polynomial matrix (Z = Z') then the
command

[ZR,U,Ui] = diagred(Z)
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produces a diagonally reduced para-Hermitian matrix ZR and a unimodular matrix
U such that

ZR = U'ZU

The unimodular matrix UI is the inverse of U.

An optional tolerance tol may be specified as an additional input argument. Its
default value is the global zeroing tolerance.

The polynomial matrix

M = [ 1  s

      0  1 ];   

is not column reduced because its column leading coefficient matrix

lcoef(M,'col')   

ans =

     1     1

     0     0   

does not have full column rank. To make M column reduced type

MR = colred(M)   

MATLAB responds with

Examples
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 Constant polynomial matrix: 2-by-2

MR =

     1     0

     0     1   

As the next example we determine a row reduced form of the polynomial matrix

N = [ 1+s  s

       0   1

      1+s  0

       0   1

The command

NR = rowred(N)   

results in

NR =

     1 + s     0

     0         1

     0         0
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     0         0   

As final example we consider the diagonal reduction of the para-Hermitian matrix

Z = [  1    1+s^2

      1+s^2 1+s^4 ];   

The command

[ZR,U,Ui]  = diagred(Z)   

results in the output

ZR =

     1     1

     1     1 - 2s^2

U =

     1    -s^2

     0     1

Ui =

     1     s^2

     0     1    
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The routine colred is dual to rowred.

With the option 'ref' the routine rowred use the repeated factor extraction
procedure described by Callier (1985). The algorithm produces both the reduction
matrix U and its inverse Ui.

With the option 'bas' the row reduction algorithm is based on the computation of
the minimal polynomial basis for the null space of a polynomial matrix closely
related to the matrix that is to be reduced (Beelen et al, 1988). The algorithm
produces U. Its inverse Ui — if requested — is computed by application of inv.

The macro diagred uses Callier's (1985) factor extraction method.

The macros colred and rowred issue error messages if

§ an invalid input argument is encountered

§ invalid Not-a-Number or Infinite entries are found in the input matrices

§ the reduction fails

§ an incorrect kernel degree is encountered

In the latter two cases the tolerance should be modified.

The macro diagred displays error messages if

§ the input is not a “continuous-time” matrix

§ the input matrix is not square

Algorithm

Diagnostics
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§ the input matrix is singular

echelon echelon form of a polynomial matrix

hermite Hermite form of a polynomial matrix

See also
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compan

Companion matrix to a polynomial matrix

[C,D] = compan(A)

[C,D] = compan(A,'bot')

[C,D] = compan(A,'top')

[C,D] = compan(A,'right')

[C,D] = compan(A,'left')

Given a square polynomial matrix

A = A0 + A1*s + ... + AN*s^N

with nonsingular leading coefficient AN, the commands

[C,D] = compan(A)

[C,D] = compan(A,'bot')

return its “bottom” block companion matrix

Purpose

Syntax

Description
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 C

I

I

I

=

− − − −

L

N

MMMMMM

O

Q

PPPPPP

0 0

0 0 0

0 0

L L

L

L L L L L

L L

L LAN A0 AN A1 AN A(N 1)\ \ \

The matrix D is an identity matrix of the same dimensions as C.

Similarly, the commands

[C,D] = compan(A,'top')

[C,D] = compan(A,'right')

[C,D] = compan(A,'left')

return “top,” “right” and “left” versions of the block companion matrix, respectively.

If, in addition, the string 'sep' is used as an input argument then the resulting
block companion matrix is returned as two separate matrices, for instance

 C

I

I

I

D

I

I

I

=

− − − −

L

N

MMMMMM

O

Q

PPPPPP

=

L

N

MMMMMM

O

Q

PPPPPP

0 0

0 0 0

0 0

0

0 0

0 0 0

0 0

L L

L

L L L L L

L L

L L

L L L

L L

L L L L L

L

L LA0 A1 A(N 1) AN

,
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Here AN may be singular.

Consider the polynomial matrix

A = [   0      1

      2*s^2  3+4*s ];   

The leading coefficient matrix

A{2}   

ans =

     0     0

     2     0   

is singular so we need the “separated” companion matrix

[C,D] = compan(A,'sep')   

which is given by

C =

     0     0     1     0

     0     0     0     1

     0    -1     0     0

Examples
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     0    -3     0    -4

D =

     1     0     0     0

     0     1     0     0

     0     0     0     0

     0     0     2     0   

The polynomial matrix

Q = [ 1+s    s^2

      2+s^2   1  ];   

has a nonsingular leading coefficient matrix. Its “left” block companion matrix is

compan(Q,'left')   

ans =

     0    -1     1     0

     0     0     0     1

     0    -1     0     0

    -1    -2     0     0   
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The macro issues error messages if

§ an invalid syntax is used

§ the input matrix is not square

§ an illegal input string is encountered

§ the leading coefficient matrix is singular

roots roots of a polynomial matrix

Diagnostics

See also
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conj

Complex conjugate of a polynomial matrix

Ac = conj(A)

For a polynomial matrix A, the command Ac = conj(A)  returns a polynomial
matrix Ac where all scalar coefficients are the complex conjugate of the
corresponding coefficients of A.

Consider

P = [(1+i)*s (1-i)*s]   

P =

     (1+1i)s     (1-1i)s   

The conjugate of this polynomial matrix is

conj(P)   

ans =

     (1-1i)s     (1+1i)s   

If A is a polynomial matrix then conj(A) = real(A) –i*imag(A).

Purpose

Syntax

Description

Examples

Algorithm
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The macro displays an error message if it has too many input arguments or too
many output arguments.

ctranspose (') conjugate transpose of a polynomial matrix

transpose (.') transpose of a polynomial matrix

real real part of a polynomial matrix

imag imaginary part of a polynomial matrix

Diagnostics

See also
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ctranspose (')

Complex conjugate transpose of a polynomial matrix

At = A'

At = ctranspose(A)

[At,n] = ctranspose(A)

For a polynomial matrix A, the commands

At = A'

At = ctranspose(A)

return the a polynomial matrix At that is formed by replacing all scalar coefficients by
their complex conjugates and transposing the resulting matrix. Moreover

§ if A is a polynomial matrix in s then s is replaced with –s

§ if A is a polynomial matrix in z then z is replaced with 1/z and the matrix is
multiplied by z^n, with n the degree of the polynomial matrix

§ if A is a polynomial matrix in d¸ q or z−1 then it is similarly transformed

The command

[At,n] = ctranspose(A)

Purpose

Syntax

Description
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additionally returns the degree n of A.

Consider

P = [(1+i)*s (1-i)*s+s^2];   

The complex conjugate transpose of this polynomial matrix is

P'   

ans =

    -(1-1i)s

    -(1+1i)s + s^2   

If on the other hand

P = [(1+i)*z (1-i)*z+z^2];

then

[Pt,n] = ctranspose(P)   

results in

 Pt =

     (1-1i)z

     1+0i + (1+1i)z

Examples
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n =

     2   

The macro ctranspose uses standard MATLAB operations.

The macro displays an error message if it has too many input arguments or too
many output arguments.

conj conjugate of a polynomial matrix

transpose (.') transpose of a polynomial matrix

real real part of a polynomial matrix

imag imaginary part of a polynomial matrix

Algorithm

Diagnostics

See also
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d, p, q, s, v, z, zi

Create simple basic polynomials

P = d

P = p

P = q

P = s

P = v

P = z

P = zi

The functions without argument d, p, q, s and z create a polynomial containing the
first power of the variable that is called.

The function without argument zi creates the polynomial z−1.

The function v creates a polynomial containing the first power of the current global
variable.

Since d, p, q, s, v, zi and z are functions they may be overridden and used as
variables.

Purpose

Syntax

Description
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Typing

P = z+z^3, Q = zi^4, R = 1+v^2   

results in

P =

     z + z^3

Q =

     z^-4

R =

     1 + s^2   

Note that typing

D   

returns

ans =

     d   

The reason is that functions are case insensitive in MATLAB so that d and D are
synonymous. Also note that in spite of this

Examples
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Q   

is returned as

Q =

     z^-4   

because Q as a function has been overridden by the variable Q previously defined.

The maco uses standard MATLAB 5 commands.

The macros return no error messages.

Algorithm

Diagnostics
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debe

Polynomial solution to the deadbeat regulator design

[Nc,Dc] = debe(N,D)

[Nc,Dc] = debe(N,D,'r')

[Nc,Dc,E,F,degT] = debe(N,D)

[Nc,Dc,E,F,degT] = debe(N,D,'r')

Given a discrete-time plant transfer matrix

P z D z N z( ) ( ) ( )= −1

the command

[Nc,Dc] = debe(N,D)

computes a deadbeat regulator with transfer matrix

C z N z D zC C( ) ( ) ( )= −1 ,

that is, a feedback controller as in Fig. 1 such that the resulting closed-loop
response to any initial condition as well as to any finite length disturbance vanishes
in a finite number of steps.

Purpose

Syntax

Description
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Fig. 1. Feedback structure

Similarly, for a discrete-time plant transfer matrix

P z N z D z( ) ( ) ( )= −1

the command

[Nc,Dc] = debe(N,D,'r')

computes a deadbeat regulator having transfer matrix described by

C z D z N zC C( ) ( ) ( )= −1 .

The macro works similarly for other discrete-time type operators q d z, , −1 .

If they exists, other deadbeat regulators may be achieved by the parameterization

C z N z E z T z D z F z T zC c( ) ( ) ( ) ( ) ( ) ( ) ( )= + − −b gb g 1
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which is computed by the command

[Nc,Dc,E,F,degT] = debe(N,D),

or by the parameterization

C z D z T z F z N z T z E zc C( ) ( ) ( ) ( ) ( ) ( ) ( )= − +−b g b g1

which is computed by the command

[Nc,Dc,E,F,degT] = debe(N,D,'r')

T z( )  is an arbitrary polynomial matrix parameter of compatible size with degree
limited by degT. Any such choice of T z( )  results in a proper controller yielding
the desired dynamics.

When the design is being made in backward shift operators ( d  or z−1) then the
degree of T is unlimited. Any choice of T  results in a causal controller that
guarantees a finite step response (with the number of steps depending on the
degree, of course). Hence, the output argument degT is useless and empty in
such a case. Fore more details on deadbeat design see Kucera and Sebek (1984),
and Kucera (1979, 1991).

Notice:  If the plant is strictly proper (or causal) then the resulting controller is
always proper (causal). Otherwise its properness (causality) is not guaranteed and
should be checked separately.

Consider a simple third order discrete-time plant with the scalar strictly proper
transfer function P z D z N z( ) ( ) ( )= −1  given by

Example 1
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N = pol([1 1 1],2,'z')

N =

     1 + z + z^2   

D = pol([4 3 2 1],3,'z')

D =

     4 + 3z + 2z^2 + z^3   

A deadbeat regulator is designed by simply typing

[Nc,Dc] = debe(N,D)

Nc =

    -2.3 - 2.3z - 2.7z^2

Dc =

     0.57 + 0.71z + z^2   

Computing the closed-loop characteristic polynomial

D*Dc+N*Nc   

ans =

     z^5   
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reveals finite modes only and hence confirms the desired deadbeat performance.

Trying

[Nc,Dc,E,F,degT] = debe(N,D)

Nc =

    -2.3 - 2.3z - 2.7z^2

Dc =

     0.57 + 0.71z + z^2

E =

     4 + 3z + 2z^2 + z^3

F =

     1 + z + z^2

degT =

  -Inf   

shows that (as degT = -Inf) there is no other proper deadbeat regulator such
that the resulting system is of order 5. Higher order deadbeat controllers can be
found by making the design in d  or by solving directly the associated Diophantine
equation, for instance,
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[Dc,Nc,F,E] = axbyc(D,N,z^6)

Dc =

    -0.47 + 0.1z + 0.25z^2 + z^3

Nc =

     1.9 - 0.88z - 1.4z^2 - 2.2z^3

F =

    -1 - z - z^2

E =

     4 + 3z + 2z^2 + z^3   

This results in a set of third order controllers parameterized by a constant T .

For a comparison, perform now the same design in the backward-shift operator
z−1. To convert the plant transfer function into z−1, type

[Nneg,Dneg] = reverse(N,D);

symbol(Nneg,'z^-1');symbol(Dneg,'z^-1');Nneg,Dneg   

Nneg =

     z^-1 + z^-2 + z^-3
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Dneg =

     1 + 2z^-1 + 3z^-2 + 4z^-3   

Typing

[Ncneg,Dcneg] = debe(Nneg,Dneg)

Ncneg =

    -2.7 - 2.3z^-1 - 2.3z^-2

Dcneg =

     1 + 0.71z^-1 + 0.57z^-2   

leads to the same regulator as above (the only deadbeat regulator of second
order). Higher order causal regulator can be obtained from

[Ncneg,Dcneg,Eneg,Fneg,degTneg] = debe(Nneg,Dneg)

Ncneg =

    -2.7 - 2.3z^-1 - 2.3z^-2

Dcneg =

     1 + 0.71z^-1 + 0.57z^-2

Eneg =



Commands — Online reference

debe

     0.25 + 0.5z^-1 + 0.75z^-2 + z^-3

Fneg =

     0.25z^-1 + 0.25z^-2 + 0.25z^-3

degTneg =

     []   

A parameter T d( )  of any degree may be used. For instance, the choice of T d( ) = 1
yields the third order regulator with

Nc_other = Ncneg+Eneg   

Nc_other =

    -2.5 - 1.8z^-1 - 1.5z^-2 + z^-3   

Dc_other = Dcneg-Fneg   

Dc_other =

     1 + 0.46z^-1 + 0.32z^-2 - 0.25z^-3   

The final check

Dneg*Dc_ other+Nneg*Nc_other   

Constant polynomial matrix: 1-by-1
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ans =

     1   

confirms the deadbeat performance.

For the two-input two-output plant with transfer matrix P z N z D z( ) ( ) ( )= −1  given by

N = [1-z z; 2-z 1]   

N =

     1 - z     z

     2 - z     1   

D = [1+2*z-z^2  -1+z+z^2; 2-z 2+3*z+2*z^2]   

D =

     1 + 2z – z^2    -1 + z + z^2

     2 - z            2 + 3z + 2z^2

the deadbeat regulator is found in the form C z D z N zC C( ) ( ) ( )= −1  by typing

[Nc,Dc] = debe(N,D,'r')   

Nc =

    -3.3 - 2.7z       0.59 – 1.2z

Example 2
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     0.33 - 0.35z     0.41 + 0.22z

Dc =

     1.4 - z     0.39 + 0.5z

    -0.37       -0.39 + 0.5z

Indeed, the resulting closed-loop denominator matrix

Dc*D+Nc*N   

ans =

     z^3     0

     0       z^3

reveals that only finite step modes are present.

Given P D N= −1 , the macro computes C N DC C= −1 by solving the linear polynomial
matrix equation DD NN Rc c+ = , where the right hand side matrix is either

R zi= diag{ }
or R I=  when working in forward or backward shift operators, respectively.

The macro returns error messages in the following situations

• The input arguments are not polynomial objects

Algorithm

Diagnostics
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• The input matrices have inconsistent dimensions

• The input string is incorrect

• The system is continuous-time

• The input polynomial matrices are not coprime

pplace pole placement

stab stabilizing controllers

See also
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deg

Various degree matrices and leading coefficient matrices of a polynomial matrix

[D,L] = deg(A)

[D,L] = deg(A,'mat')

[D,L] = deg(A,'ent')

[D,L] = deg(A,'row')    

[D,L] = deg(A,'col')

[D,L] = deg(A,'dia')

The commands  deg(A) and deg(A,'mat') return the degree of  A.

Similarly, deg(A,'ent'), deg(A,'row') and deg(A,'col') return the matrix
of degrees of each entry, the column vector of row degrees and the row vector of
column degrees of A, respectively.

For a para-Hermitian polynomial matrix deg(A,'dia') returns the vector of half
diagonal degrees.

In all the syntaxes the corresponding  leading coefficient matrix is returned as the
second output argument L..

Purpose

Syntax

Description
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The simple polynomial matrix

P = [ 1  s

     s^2 0 ];  

has degree and leading coefficient matrix

[degP,L] = deg(P)   

degP =

     2

L =

     0     0

     1     0   

The degrees of the entries and corresponding leading coefficients are

[DEGP,L] = deg(P,'ent')   

DEGP =

     0     1

     2  -Inf

L =

Examples
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     1     1

     1     0   

The row degrees and the row leading coefficient matrix follow as

[DegP,L] = deg(P,'row')   

DegP =

     1

     2

L =

     0     1

     1     0   

The column degrees and column leading coefficient matrix are

[DegP,L] = deg(P,'col')   

DegP =

     2     1

L =

     0     1
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     1     0   

Finally,

[DegZ,L] = deg([ 1+2*s^2   3*s

                  -3*s      4 ],'dia')   

results in

DegZ =

     1

     0

L =

    -2    -3

    -3     4   

Note that deg does not zero any coefficient and tests on exact zeros. Thus,

deg(1+1e-32*s)   

returns

ans =

     1   
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The macro deg uses standard MATLAB operations.

The macro displays an error message if

§ an unknown option is encountered

§ in case the option is 'dia': if the input matrix is not square or not para-
Hermitian

lcoef leading coefficient matrix of a polynomial matrix

Algorithm

Diagnostics

See also
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det

Polynomial matrix determinant

d = det(A)

d = det(A,method)  

d = det(A,tol)

d = det(A,method,tol)

The macro works similarly to the standard MATLAB function det. The command

d = det(A)

returns the determinant of the square polynomial matrix A.The command

d = det(A,method)

allows the user to specify the method. The following methods are available:

‘fft’ interpolation and fast Fourier transform – default

‘eig’ as the characteristic polynomial of the block companion matrix
corresponding to A

The optional input parameter tol is the tolerance used for zeroing. Its default
value is the global zeroing tolerance.

Purpose

Syntax

Description
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Obviously the determinant of the polynomial matrix

P s
s

s s
( ) =

L
NM

O
QP

1
2

is zero. Indeed,

det([1 s; s s^2])   

returns

Zero polynomial matrix: 1-by-1,  degree: -Inf

ans =

     0   

In the ‘fft’ method first P si( )  is evaluated at a suitably chosen set of Fourier

points si  using the Fast Fourier Transform algorithm. Then the determinants of the
resulting constant matrices are evaluated, and finally the desired determinant
det ( )P s  is recovered from the constant determinants using the inverse FFT (Bini
and Pan, 1994; Hromcik and Sebek, 1998).

In the 'eig' algorithm the determinant is computed as the characteristic
polynomial of the block companion matrix corresponding to A (Kwakernaak and
Sebek, 1994).

Examples

Algorithm
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The macro displays an error message if

§ an unknown option is encountered, or if

§ the input matrix is not square

roots roots of a polynomial matrix

Diagnostics

See also
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det2d

Determinant of polynomial matrix in two variables

q = det2d(P0,P1,...,Pn)

q = det2d(P0,P1,...,Pn,tol)

A polynomial matrix in two variables

P v w P P v P w P v wmn
m n( , ) = + + + +00 10 01 L

is called a two-dimensional or simply 2-D polynomial matrix. If the matrix P v w( , )  is
square then its determinant is a scalar 2-D polynomial

det ( , ) ( , )P v w q v w q q v q w q v wkl
k l= = + + + +00 10 01 L

defined as usual.

Alternatively, P v w( , )  may be described as a polynomial matrix in w  having as its
coefficients polynomial matrices in v  denoted by P vi( )

P v w P v w P v P v w P v w P v wn
n( , ) ( )( ) ( ) ( ) ( ) ( )= = + + + +0 1 2

2 L

and also its determinant may be written as

det ( , ) ( , ) ( ) ( ) ( ) ( )P v w q v w q v q v w q v w q v wl
l= = + + + +0 1 2

2 L .

Purpose

Syntax

Description
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For such a P v w( , )  given by P v0( ) , P v1( ) , L,  P vn( )  the command

q = det2d(P0,P1,...,Pn)

returns a vector q of polynomial coefficients q v0( ) , q v1( ) , L , q vl( )  of the
determinant q v w P v w( , ) det ( , )= .

Note: The macro works with v  equal to any of the standard symbols s p z q z d, , , , ,−1 .
The other symbol w  is typically an uncertain real parameter encountered in robust
stability analysis for single-parameter uncertain polynomial matrices.

The macro may also be called as

q = det2d(P0,P1,...,Pn,tol)

where the optional input parameter tol is the tolerance used for zeroing. Its
default value is the global zeroing tolerance.

Note: If the last input argument is a scalar then it is always considered to be the
tolerance.

Obviously the determinant of the polynomial matrix

P s
r s

sr s r

s

s
r

s
r( ) =

+L
NM

O
QP =

L
NM

O
QP +

L
NM

O
QP +

L
NM

O
QP

1 1

0 0

1 0

0

0 0

02 2 2
2

is

det ( , ) ( , )P s r q s r s r= = 2

Example
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and we should get q s0 0( ) = , q s s1
2( ) =  and q si( ) = 0  for all higher powers of r .

Indeed,

q = det2d([1 s;0 0],[1 0;0 s^2;],[0 0;s 0])   

returns

q =

     0

     s^2

as expected.

The macro is based on an original application of the 2-D Fast Fourier Transform
(FFT) routine.

The macro displays an error message if the input matrices are not square or of the
same size. It displays a warning message if the input matrices are not in the same
variable symbol.

det polynomial matrix determinant

Algorithm

Diagnostics

See also
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diag

Extract polynomial matrix diagonals or create diagonal polynomial matrices

a = diag(A)

a = diag(A,k)

A = diag(a)

A = diag(a,k)

If A is a polynomial matrix with at least two columns and two rows then

a = diag(A)

returns a column vector whose entries are the diagonal entries of A. If the
command is

a = diag(A,k)

with k ≥ 0 , then the kth diagonal above the main diagonal is returned, and if k < 0
then the |k|th diagonal below the main diagonal is returned.

If a is a column or row vector of polynomials of length n then

A = diag(a)

Purpose

Syntax

Description
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returns an n n×  polynomial matrix A with the entries of a on its main diagonal. The
command

A = diag(a,k)

returns a square matrix A that has the entries of a on its kth diagonal, where again
k may be positive or negative.

The command

diag([ 1+s    2*s^2

       -2    3+4*s^3 ])   

produces

ans =

     1 + s

     3 + 4s^3   

while

diag([ 1+s  2+4*s^3 ],1)   

results in

ans =

     0     1 + s     0

Examples
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     0     0         2 + 4s^3

     0     0         0   

Note that if X is a polynomial matrix whoze size is at least 2 2×  then
diag(diag(X)) is a diagonal matrix whose diagonal is identical to that of X, and
sum(diag(X)) is the trace of X.

The routine uses standard routines from the Polynomial Toolbox.

The macro displays no error messages.

tril extract the lower triangular part

triu extract the upper triangular part

Algorithm

Diagnostics

See also
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display

Command window display of a polynomial matrix

display(P)

The command

display(P)

displays the polynomial matrix P in the MATLAB command window. The display
format is set by the macro pformat.

We display the matrix

P = [1+2*s 4/3*s^2];   

in different formats:

pformat coef, display(P)   

 Polynomial matrix in s: 1-by-2,  degree: 2

P =

Matrix coefficient at s^0 :

     1     0

Purpose

Syntax

Description

Examples



Commands — Online reference

display

Matrix coefficient at s^1 :

     2     0

Matrix coefficient at s^2 :

     0    1.3333   

pformat block, display(P)   

Polynomial matrix in s: 1-by-2,  degree: 2

P =

    1.0000         0    2.0000         0         0

1.3333   

pformat symb, display(P)   

 P =

      1 + 2s     1.3333s^2   

pformat symbr, display(P)   

 P =

     1 + 2*s     4/3*s^2   

The macro uses standard MATLAB 5 operations.Algorithm
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The macro displays no error messages

char convert a polynomial matrix to strings

pformat switch between different display formats

Diagnostics

See also
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dsp2pol

Conversion of a polynomial or polynomial matrix in DSP format to Polynomial
Toolbox format

P = dsp2pol(M)

The command

P = dsp2pol(M)

converts the polynomial or polynomial matrix M in DSP format to Polynomial
Toolbox format.

In DSP format a polynomial is represented as a row vector whose entries are the
coefficients of the polynomial according to ascending powers. A polynomial matrix
is a cell array of the same dimensions as the polynomial matrix, with each cell a
row vector representing the corresponding entry of the polynomial matrix in DSP
format. The DSP format is typically used for discrete-time systems.

Conversion of a polynomial from DSP format to Polynomial Toolbox format:

gprop q; P = dsp2pol([1 2 3])       

P =

     1 + 2q + 3q^2   

Purpose

Syntax

Description

Examples
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Conversion of a polynomial matrix from DSP format:

M is a matrix in DSP format. First display M and its entries:

M  

M =

    [1x3 double]    [1x3 double]   

M{1,1}, M{1,2}   

ans =

     1     2     0

ans =

     3     0     4   

Next convert to Polynomial Toolbox format:

P = dsp2pol(M)       

P =

     1 + 2q     3 + 4q^2

The macro dsp2pol uses standard MATLAB 5 operations.Algorithm
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The macro dsp2pol displays an error message if the input is not a polynomial or
polynomial matrix in DSP format.

mat2pol conversion from Polynomial Toolbox format to MATLAB or Control
System Toolbox format

pol2dsp conversion from Polynomial Toolbox format to DSP format

pol2mat conversion from to MATLAB or Control System Toolbox format to
Polynomial Toolbox format

Diagnostics

See also
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dss2lmf, dss2rmf

Conversion of descriptor representation to left or right matrix fraction representation

[N,D] = dss2lmf(a,b,c,d,e)

[N,D] = dss2lmf(a,b,c,d,e,tol)

[N,D] = dss2rmf(a,b,c,d,e)

[N,D] = dss2rmf(a,b,c,d,e,tol)

The commands

[N,D] = dss2lmf(a,b,c,d,e)

[N,D] = dss2lmf(a,b,c,d,e,tol)

convert the transfer matrix

H s c se a b d( ) ( )= − +−1

of the descriptor system

ex ax bu

y cx du

& = +
= +

to the left coprime polynomial matrix fraction

Purpose

Syntax

Description
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H s D s N s( ) ( ) ( )= −1

If H is proper then the denominator matrix D is row reduced .

The commands

[N,D] = dss2lmf(a,b,c,d,e)

[N,D] = dss2lmf(a,b,c,d,e,tol)

produce the right polynomial matrix fraction

H s N s D s( ) ( ) ( )= −1

If H is proper then D is column reduced.

The optional input parameter tol is a tolerance. Its default value is the global
zeroing tolerance.

The continuous-time interpretation of the input applies if the default indeterminate
variable is either s or p. The variables of the output arguments N and D are set
accordingly.

In a discrete-time environment, where either z or p is the default indeterminate
variable, the input parameters define the discrete-time descriptor system

ex t ax t bu t

y t cx t u t

( ) ( ) ( )

( ) ( ) ( )

+ = +
= +

1
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The output parameters N and D then are polynomial matrices in z or q representing
the transfer matrix in the left or right fractional form H D N= −1  or H ND= −1 .

If the default indeterminate variable is z^-1 or d then the input parameters again
are taken to define a discrete-time descriptor system, and the output parameters N
and D are converted to polynomial matrices in the default variable.

Consider the SISO descriptor system defined by

a = [ 1     0     0

      0     1     0

      0     0     1 ];

b = [ 0

      0

      1 ];

c = [-1     0     0 ];

d =   0;

e = [ 0     1     0

      0     0     1

      0     0     0   ];   

Examples
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The system may be converted to matrix fraction form by the command

[N,D] = dss2lmf(a,b,c,d,e)   

N =

     s^2

Constant polynomial matrix: 1-by-1

D =

     1   

If we redefine the default indeterminate variable according to

gprop 'z^-1'   

then the command

[N,D] = dss2lmf(a,b,c,d,e)

results in

Constant polynomial matrix: 1-by-1

N =

     1

D =
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     z^-2   

Note that this system is not causal.

Given the transfer matrix

H s c se a b d( ) ( )= − +−1

the routine lmf2rmf is used for the conversion

( ) ( ) ( )se a b N s D sr r− =− −1 1

The desired left matrix fraction then follows by application of rmf2lmf to

H s cN s d s D s D s D s N sr r r( ) ( ) ( ) ( ) ( ) ( ) ( )= + = −b g 1

The second conversion is necessary to make sure that the fraction is coprime.

This algorithm also applies if the indeterminate variable is p, z or q. If the
indeterminate variable is z^-1 or d then a final conversion of the fraction with the
help of reverse is needed.

The dss2rmf conversion follows similarly.

Error messages are issued under the following conditions

§ the number of input arguments is incorrect

§ the input matrices have incompatible sizes

Algorithm

Diagnostics
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§ the input matrices are not constant matrices

§ the tolerance is invalid

§ the matrix se–a is singular

lmf2dss, rmf2dss conversion of to a left or right polynomial matrix fraction
to descriptor representation

ss2rmf, rmf2ss
ss2lmf, lmf2ss

conversion from state space representation to right or
left matrix fraction or vice-versa

See also
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dss2ss

Conversion of descriptor to (generalized) state space representation

[a,b,c,d] = dss2ss(A,B,C,D,E)

[a,b,c,d] = dss2ss(A,B,C,D,E,tol)

The commands

[a,b,c,d] = dss2ss(A,B,C,D,E)

[a,b,c,d] = dss2ss(A,B,C,D,E,tol)

convert the descriptor system

Ex Ax Bu

y Cx Du

& = +
= +

to the state space system

&

( )

x ax bu

y cx d s u

= +
= +

with d(s) a polynomial matrix and s the differentiation operator. The systems are
equivalent in the sense that

C sE A B D c sI a b d s( ) ( ) ( )− + = − +− −1 1

Purpose

Syntax

Description
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If instead of s the default indeterminate variable is p then the system is also a
continuous-time system but d is returned as polynomial in p.

If the default indeterminate variable is z, q, z^-1 or d then the input parameters
are considered to represent the discrete-time descriptor system

Ex t Ax t Bu t

y t Cx t Du t

( ) ( ) ( )

( ) ( ) ( )

+ = +
= +

1

The output parameters then define the generalized discrete-time state space
system

ξ ξ

ξ

( ) ( ) ( )

( ) ( ) ( ) ( )

t a t bu t

y t c t d z u t

+ = +

= +

1

with z the time-shift operator defined by zu(t) = u(t+1). If the default indeterminate
variable is q then d() is returned as a polynomial in q, if the default indeterminate
variable is z^-1 then d() is returned as a polynomial matrix in z, and if the default
indeterminate is d then d() is returned as a polynomial matrix in q.

If the output parameter d is constant or the zero matrix then it is returned as an
ordinary matrix in MATLAB format.

The input parameter tol is an optional tolerance parameter, which is used to
separate the finite from the infinite poles of the system. Its default value is the
global zeroing tolerance.
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Consider the descriptor system defined by

E = [   1      0   0     0

        0      1   0     0

        0      0   1     0

        0      0   0     0  ];

A = [   0      1   0     0

        0      0   0     0

        0      0   0     1

        0      0   1     0  ];

B = [ sqrt(2)  0

        1      1

        0      0

        0     -1 ];

C = [   1      0   0     0

        0      0   0.1   0.01

       -1      0   0     0    ];

Examples
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D = [   1      0

        0      0

       -1      0  ];   

Application of

[a,b,c,d] = dss2ss(A,B,C,D,E)   

produces the state space system given by

a =

     0     1

     0     0

b =

   -1.4142         0

   -1.0000   -1.0000

c =

    -1     0

     0     0

     1     0
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d =

     1     0

     0     0.1 + 0.01s

    -1     0    

As a second example consider the descriptor system given by

E = [  1  0  0

       0  1  0

       0  0  0  ];

A = [  0  1  0

       0  0  1

      -1  0  0  ];

B = [  0

       0

       1 ];

C = [  0  0  1  ];

D = 0;   
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The command

[a,b,c,d] = dss2ss(A,B,C,D,E)

results in

a =

     []

b =

   Empty matrix: 0-by-1

c =

   Empty matrix: 1-by-0

d =

     s^2   

Evidently the descriptor system defines a system with the purely polynomial
transfer function

H s s( ) = 2

The command

gprop 'z^-1', [a,b,c,d] = dss2ss(A,B,C,D,E)

returns
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a =

     []

b =

   Empty matrix: 0-by-1

c =

   Empty matrix: 1-by-0

d =

     z^2   

Using the routine pencan the pencil sE–A is transformed to the Kronecker
canonical form

q sE A z
sI a

I se
( )− =

−
−

L
NM

O
QP

0

0

with e nilpotent. Partitioning

Cz c c qB
b

bo
o

= =
L
NM

O
QP,

it follows that

Algorithm
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C sE A B D c sI a b c I se b Do o( ) ( ) ( )− + = − + − +− − −1 1 1

Because e  is nilpotent we have

( )I se I se se s ep p− = + + + +−1 2 L

for some finite power p which easily can be determined. This immediately leads to
the desired result.

The routine displays error messages under the following circumstances:

§ An invalid value for the tolerance is encountered

§ The number of input arguments incorrect

§ The input matrices are not constant matrices

§ The input matrices have incompatible sizes

ss2dss conversion of (generalized) state space representation to
descriptor representation

dss create descriptor state space models or convert LTI models to
descriptor state space form

Diagnostics

See also
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dsshinf

Computation of H-infinity suboptimal compensators for a descriptor standard plant

[Ak,Bk,Ck,Dk,Ek,clpoles,rho] = ...

   dsshinf(A,B,C,D,E,nmeas,ncon,gamma)

[Ak,Bk,Ck,Dk,Ek,clpoles,rho] = ...

   dsshinf(A,B,C,D,E,nmeas,ncon,gamma[,options][,tol])

The command

[Ak,Bk,Ck,Dk,Ek,clpoles,rho] = ...

   dsshinf(A,B,C,D,E,nmeas,ncon,gamma)

computes the suboptimal compensator for the standard H∞  problem for the
generalized plant

Ex Ax B
w

u

z

y
Cx D

w

u

& = +
L
NM

O
QP

L
NM
O
QP = +

L
NM

O
QP

Purpose

Syntax

Description
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with nmeas measured outputs y and ncon control inputs u according to the level
gamma.

Several options may be specified. Without the option 'all' the routine computes
the “central” compensator

K s s( ) ( )= − +−Ck Ek Ak Bk Dk1

If the option 'all' is included then after partitioning

Bk = [Bk1 Bk2]

Ck = [Ck1    

      Ck2]

Dk = [0    0

      0  Dk22]

where Bk1 has nmeas columns and Ck1 has ncon rows, all suboptimal
compensators may be parametrized as

&x x y p

u x p

q x y p

p Uq

k k

k

k

= + +

= +

= + +

=

Ak Bk Bk2

Ck1

Ck2 Dk2

1
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U is any stable LTI system whose transfer matrix has infinity-norm less than or
equal to 1. The central compensator follows by setting U = 0.

The array clpoles contains the finite closed-loop poles obtained for the central
compensator, that is, the closed poles with magnitude less than 1/tol. The default
value of the optional input parameter tol is 1e-6.

The output parameter rho is the smallest singular value of a matrix z that arises in
the algorithm. For so-called type 2 optimal solutions this matrix z is singular and,
hence, rho = 0. This parameter may be used in searching for the optimal solution
(see dssrch).

If gamma is too small so that no suboptimal compensator exists then the routine
exits with all output arguments empty. In verbose mode a warning message is
issued.

Conditions on the input data: If D is partitioned as

      D = [D11 D12

       D21 D22]

where D12 has ncon columns and D21 has nmeas rows, then D12 needs to have
full column rank and D21 full row rank. Use the command dssreg to “regularize”
the system if this condition is not met.

Options: The available options (none or several may be included) besides 'all'
are
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'notest'    the rank tests on D12 and D21 are omitted

'nopoles'   the closed loop poles are not computed. In this case the output
argument clpoles is empty.

We consider the mixed sensitivity problem for the SISO plant with transfer function

P s
s

( ) =
1
2

and the shaping and weighting functions

V s
s s

s
W s W s c rs( ) , ( ) , ( ) ( )=

+ +
= = +

2

2 1 2
2 1

1 1

Fig. 2. The mixed sensitivity problem

Example
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(Kwakernaak, 1993). The block diagram of Fig. 2 shows the standard plant that
defines this mixed sensitivity problem.

We construct a descriptor representation of the plant as follows. First we note that

− =
L
NM

O
QPy P V

u

w

A state representation of

P V
s

s s= + +
1

1 2 1
2

2

may for instance be found with the help of the Polynomial Toolbox routine lmf2ss.
We have

&

&

x

x

x

x

u

w

y
x

x

u

w

1

2

1

2

1

2

0 1

0 1
0 2

1 1

1 0 0 1

L
NM

O
QP =

L
NM

O
QP
L
NM

O
QP +

L
NM

O
QP
L
NM

O
QP

− =
L
NM

O
QP +

L
NM

O
QP

A descriptor representation of the differentiating filter W2  is found by defining two
pseudo state variables

x u

x u
3

4

=

= &
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From this we obtain the descriptor equations

&x x

x u
3 4

30

=

= − +

The corresponding output equation follows as

z c rs u crx cu2 41= + = +( )

By inspection of the block diagram we can now write the descriptor representation
of the standard plant as

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1

0 0 1 0

2 0

1 1

0 0

0 1

1 0 0 0

0 0 0

1

1

2

3

4

1

2

3

4

1

2

L

N

MMMM

O

Q

PPPP

L

N

MMMM

O

Q

PPPP
=

−

L

N

MMMM

O

Q

PPPP

L

N

MMMM

O

Q

PPPP
+

L

N

MMMMM

O

Q

PPPPP

L
NM

O
QP

L

N
MMM

O

Q
PPP

=
−

E

x

x

x

x

A

x

x

x

x

B

w

u

z

z

y

cr

1 244 344 1 244 344 1 24 34

&

&

&

&

0 0 0

1 0

0

1 0

1

2

3

4

L

N
MMM

O

Q
PPP

L

N

MMMM

O

Q

PPPP
+

−

L

N
MMM

O

Q
PPP
L
NM

O
QP

C

x

x

x

x

c

D

w

u
1 244 344 124 34

Both D12 and D21 have full rank as required.

We first define the input data A, B, C, D, and E and set nmeas = 1, ncon = 1.
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c = 0.1; r = 0.1;

E = [1 0 0 0; 0 1 0 0; 0 0 1 0; 0 0 0 0];

A = [0 1 0 0; 0 0 0 0; 0 0 0 1; 0 0 -1 0];

B = [sqrt(2) 0; 1 1; 0 0; 0 1];

C = [1 0 0 0; 0 0 0 c*r; -1 0 0 0];

D = [1 0; 0 c; -1 0];

nmeas = 1; ncon = 1; gamma = 10;   

We next run the macro dsshinf:

[Ak,Bk,Ck,Dk,Ek,clpoles,rho] = ...

   dsshinf(A,B,C,D,E,nmeas,ncon,gamma)

Ak =

   -0.0000    0.0000    0.0000   10.1103

   -0.0733   -0.4206   -0.9820   -6.6580

   -0.0660   -1.1965    1.0953   -8.3990

    0.9950   -0.0929   -0.0341    0.0099

Bk =
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         0

   -0.3974

    1.6859

         0

Ck =

    0.0990    0.9525    0.2528    9.9731

Dk =

     0

Ek =

         0         0         0         0

    0.0073   -0.2744    0.8884   -0.2433

    0.0067    0.0256    0.3661    0.8261

   -0.0990   -0.9525   -0.2528    0.1373

clpoles =

 -10.0526 + 0.0000i

  -2.1935 - 2.3064i
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  -2.1935 + 2.3064i

  -0.7071 - 0.7071i

  -0.7071 + 0.7071i

rho =

    0.8611   

The descriptor representation of the suboptimal compensator is not minimal. We
use the routine dssmin to reduce the dimension of the representation:

[ak,bk,ck,dk,ek] = dssmin(Ak,Bk,Ck,Dk,Ek)   

ak =

  -10.3436   74.0344 -178.6303

         0   -7.0852   17.4110

         0   -1.7125    1.5749

bk =

  197.3278

  -19.2045

   -2.3324
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ck =

   -0.0962   -0.9854   -0.0272

dk =

     0

ek =

     1     0     0

     0     1     0

     0     0     1   

Since ek is a unit matrix this is a state representation. Because dk = 0 the
compensator is strictly proper. This is a consequence of choosing the weighting
function W2  nonproper.

We rerun the command with the option ‘all’:

[Ak,Bk,Ck,Dk,Ek,clpoles,rho] = ...

   dsshinf(A,B,C,D,E,nmeas,ncon,gamma,'all');

Bk, Ck, Dk   

Bk =

         0    1.0000
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   -0.3974   -0.6623

    1.6859   -0.7493

         0         0

Ck =

    0.0990    0.9525    0.2528    9.9731

    0.0010   -0.2262    0.4290   -0.7448

Dk =

     0     0

     0     0   

Ek, Ak, clpoles and rho do not change as compared to the previous solution.

The solution of the H∞  problem relies on the frequency domain solution of the
standard H∞  problem as described in Kwakernaak (1998) with a much-improved
algorithm for the spectral factorization that this solution involves. The algorithm
eliminates any singularities that occur at type 2 optimal solutions.

The macro displays error messages in the following situations:

• The input matrices have inconsistent dimensions

• An invalid option is encountered

Algorithm

Diagnostics
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• A wrong last input parameter is encountered

• Too many options are specified

• D12 is not tall or D21 is not wide

• D12 or D21 does not have full rank

In verbose mode a warning is issued if gamma is too small so that no solution
exists.

dssrch search H∞ -optimal compensators for descriptor systems

dssreg regularize descriptor systems

dssmin minimize descriptor systems

See also
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Minimization of a descriptor representation

[a,b,c,d,e] = dssmin(A,B,C,D,E)

[a,b,c,d,e] = dssmin(A,B,C,D,E,tol)

The commands

[a,b,c,d,e] = dssmin(A,B,C,D,E)

[a,b,c,d,e] = dssmin(A,B,C,D,E,tol)

serve to minimize the dimension of the pseudo state of the descriptor system

Ex t Ax t Bu t

y t Cx t Du t

&( ) ( ) ( )

( ) ( ) ( )

= +
= +

      or     
Ex t Ax t Bu t

y t Cx t Du t

( ) ( ) ( )

( ) ( ) ( )

+ = +
= +

1

If the system has a proper transfer matrix then it is returned in state space form,
that is, e = I.

The optional parameter tol specifies the tolerance that is used to separate the
finite from the infinite poles. The default value is 1e-8.

Note: Any finite noncontrollable or nonobservable modes of the system are
preserved.

Purpose

Syntax

Description
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Consider the descriptor system

1 0 0

0 1 0

0 0 0

0 0 0

0 0 1

0 1 0

1
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It is defined by typing

E = [ 1 0 0

      0 1 0

      0 0 0 ];

A = [ 0  0 0

      0  0 1

      0 -1 0 ];

B = [1; 0; 1];

C = [ 1  0 0 ];   

D = 0;   

The minimal representation follows by typing

Examples
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[a,b,c,d,e] = dssmin(A,B,C,D,E)   

a =

     0

b =

    -1

c =

    -1

d =

     0

e =

     1   

The minimal system turns out to be a state space system of dimension 1.

Using the routine dss2ss the descriptor system is converted to state space form

&

( )

ξ ξ

ξ

= +

= +

a bu

y c D s uo

Algorithm
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with D so( )  a polynomial matrix. Subsequently, ss2dss is invoked to determine a
minimal descriptor representation.

The macro dssmin displays error messages if the number of input arguments is
incorrect or an incorrect value for the tolerance is encountered.

dss2ss conversion from descriptor to (generalized) state space
representation

ss2dss conversion from (generalized) state space to descriptor
representation

Diagnostics

See also
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dssrch

Search for H∞  optimal compensators for a descriptor standard plant

[Ak,Bk,Ck,Dk,Ek,gopt,clpoles] = ...

   dssrch(A,B,C,D,E,nmeas,ncon,gmin,gmax)

[Ak,Bk,Ck,Dk,Ek,gopt,clpoles] = ...

   dssrch(A,B,C,D,E,nmeas,ncon,gmin,gmax[,pars][,'show'])

The command

[Ak,Bk,Ck,Dk,Ek,gopt,clpoles] = ...

   dssrch(A,B,C,D,E,nmeas,ncon,gmin,gmax)

computes the central H∞  optimal solution for the standard plant with the descriptor
representation

Ex Ax B
w

u

z

y
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w

u

& = +
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QP

Purpose

Syntax

Description
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The plant has ncon control inputs u and nmeas measured outputs y. The optimal
compensator has the transfer matrix representation

K s s( ) ( )= − +−Ck Ek Ak Bk Dk1

The output parameter gopt is the minimal H∞  norm and clpoles represents the
closed-loop poles.  The input parameter gmin is the lower limit of the initial search
interval and gmax the upper limit.

Features

1. If no solution exists within the initial search interval [gmin,gmax] then the
interval is automatically expanded.

2. The macro also computes optimal solutions for generalized plants that have
unstable fixed poles.

3. The macro computes both type 1 optimal solutions (gopt coincides with the
lowest value of gamma for which spectral factorization is possible) and type 2
optimal solutions (gopt is greater than this lowest value.

4. After the search has been completed the compensator is reduced to minimal
dimension. If the compensator is proper then Ek is the unit matrix.

5. Initially the search is binary. If the solution is of type 2 and close to optimal then
a secant method is used to obtain fast convergence to an accurate solution.
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6. Before the search is initiated the descriptor representation of the generalized
plant is regularized in the sense that it is modified so that D12 and D21 have
full rank.

The optional input parameter pars is a vector with components

pars = [acc tolrho thrrho maxpole tolrnk tolstable]

with

acc  Accuracy. If gmax-gmin < acc then the search is terminated. The
default value is 1e-4.

tolrho Tolerance on the (nonnegative) singularity parameter rho. A type 2
optimal solution is achieved exactly if rho = 0. If rho < tolrho then the
search is terminated. The default value of tolrho is 1e-8.

thrrho Threshhold on rho. If rho < thrrho then the search switches from
binary to secant. The default value of thrrho is 0.01.

maxpole Largest size of an open- or closed-loop pole. If the size of a pole is
greater than maxpole then the pole is considered to be a pole at infinity. A
fixed open-loop pole is considered unstable if its real part is greater than -
1/maxpole. The default value of maxpole is 1e+6.

tolrnk Tolerance in the rank test to determine whether an open-loop pole is
uncontrollable or observable and, hence, a fixed pole. The default value is
1e-8.
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tolstable Tolerance used in isstable to test stability. The default value is
1e-8.

If pars has p entries, with p < 6, then these entries are assigned to the first p
parameters in the list. The remaining parameters take the default values.

If the optional input parameter 'show' is present then the progress of the search
is displayed.

Example 1: Double integrator plant (Kwakernaak, 1993).

We consider the mixed sensitivity problem for the SISO plant with transfer function

P s
s

( ) =
1
2

and the shaping and weighting functions

V s
s s

s
W s W s c rs( ) , ( ) , ( ) ( )=

+ +
= = +

2

2 1 2
2 1

1 1

In the Example section of the description of the command deshinf it is shown that
this problem corresponds to the standard plant given by

Examples
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We first define the plant.

c = 0.1; r =0.1;

E = [1 0 0 0; 0 1 0 0; 0 0 1 0; 0 0 0 0];

A = [0 1 0 0; 0 0 0 0; 0 0 0 1; 0 0 -1 0];

B = [sqrt(2) 0; 1 1; 0 0; 0 1];

C = [1 0 0 0; 0 0 0 c*r; -1 0 0 0];

D = [1 0; 0 c; -1 0];

nmeas = 1; ncon = 1;   

Next, the search is started.
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gmin = 1; gmax = 10;

[Ak,Bk,Ck,Dk,Ek,gopt,clpoles] = ...

   dssrch(A,B,C,D,E,nmeas,ncon,gmin,gmax,'show')   

MATLAB responds with

Search for optimal solution

     action gamma

     ------ -----

     testgmax 10

     testgmin 1

     binsearch 5.5

     binsearch 3.25

     binsearch 2.125

     binsearch 1.5625

     binsearch 1.28125

     binsearch 1.42188

     binsearch 1.35156
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     binsearch 1.38672

     secsearch 1.38343

     secsearch 1.38332

     secsearch 1.38331

     secsearch 1.38331

Ak =

  -13.6965   77.7084

   -0.5976   -2.3738

Bk =

  1.0e+003 *

   -1.4810

   -0.0518

Ck =

   -0.0303   -0.9789

Dk =

 -3.2317e-007
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Ek =

     1     0

     0     1

gopt =

    1.3833

clpoles =

  -7.3281 + 1.8765i

  -7.3281 - 1.8765i

  -0.7071 + 0.7071i

  -0.7071 - 0.7071i   

In the search process, first the upper and lower bounds of the initial search interval
are tested. Next, eight binary search steps follow, after which in four secant search
steps the search fast and accurately reaches the optimal solution.

Because Ek = I  the optimal compensator is proper  and because Dk = 0  it is even
strictly proper. We compute the compensator in transfer function form as

[y,x] = ss2lmf(Ak,Bk,Ck)

y =
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    -57 - 96s

x =

    -79 - 16s - s^2  

Example 2. “Model matching” problem (Kwakernaak, 1996).

Given an unstable SISO system with transfer function P we consider the problem
of finding a stable system with transfer function K(s) such that

P K− ∞

is minimal. It is easy to check that this corresponds to an H∞ -optimization problem
with generalized plant

G
P

=
−L

NM
O
QP

1

1 0

If for instance

P s
s

( ) =
−
1

1

then in state space form the generalized plant is given by

&x x w

z x u

y w

= +
= − −
=
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We thus define the input data according to

E = 1; A = 1; B = [1 0]; C = [-1; 0]; D = [0 -1; 1 0];

nmeas = 1; ncon = 1;   

The solution is obtained as follows.

gmin = 1; gmax = 10;

[Ak,Bk,Ck,Dk,Ek,gopt,clpoles] = ...

   dssrch(A,B,C,D,E,nmeas,ncon,gmin,gmax,'show')

MATLAB responds with

Fixed poles

     1 unstable

Search for optimal solution

     action gamma

     ------ -----

     testgmax 10

     testgmin 1

     testgmin 0.5
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     testgmin 0.25

     binsearch 5.125

     binsearch 2.6875

     binsearch 1.46875

     binsearch 0.859375

     binsearch 0.554688

     binsearch 0.402344

     binsearch 0.478516

     binsearch 0.516602

     binsearch 0.497559

     secsearch 0.500027

     secsearch 0.5

     secsearch 0.5

Ak =

     []

Bk =
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   Empty matrix: 0-by-1

Ck =

   Empty matrix: 1-by-0

Dk =

    0.5000

Ek =

     []

gopt =

    0.5000

clpoles =

     1   

The generalized plant has a fixed unstable pole at 1.  The routine first adjusts the
lower limit of the search interval. After 9 binary search steps 3 secant steps are
enough to reach an accurate solution. The optimal solution is given by

K s( ) .= 0 5000

Before the search is started the plant is “regularized” using the routine desreg.
Next the upper and lower limits of the search interval are tested using deshinf. If

Algorithm
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no solution exists inside this interval then the upper limit is doubled or the lower
limit halved until a solution is contained in the interval.

Once the search interval is established a binary search is started, where the next
solution is sought at (gmax + gmin)/2 and the interval is adjusted depending on
whether or not a solution exists at this point.

As soon as the output parameter rho of deshinf is less than thrrho the search
switches to a secant search where the next solution is sought at
(gmax*rhomin+gmin*rhomax)/(rhomax+rhomin). The search stops if either
gmax-gmin < acc or rho < tolrho.

After the search has been completed the dimension of the compensator that has
been computer is reduced using desmin.

The macro displays error messages in the following situations:

• An invalid option is encountered

• The input parameter par has too many entries

• The input matrices have inconsistent dimensions

• Too many options are specified

• gmax < gmin

• gmax has been doubled 4 times without finding a stabilizing compensator at
gmax

Diagnostics



Commands — Online reference

dssrch

• gmin has been halved 4 times but a stabilizing compensator still exists at
gmin

If there are any fixed poles then these are listed.

If the option 'show' is present then it is reported if the plant is transformed in
order to regularize it, and the progress of the search is displayed.

dsshinf H∞  optimization for a descriptor plant

dssreg “regularization” of a standard descriptor plant

dssmin dimension reduction of a descriptor system

See also
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“Regularization” of a standard descriptor plant

[a,b,c,d,e] = dssreg(A,B,C,D,E,nmeas,ncon)

[a,b,c,d,e] = dssreg(A,B,C,D,E,nmeas,ncon,tol)

The commands

[a,b,c,d,e] = dssreg(A,B,C,D,E,nmeas,ncon)

[a,b,c,d,e] = dssreg(A,B,C,D,E,nmeas,ncon,tol)

transform the generalized plant

Ex Ax B
w

u
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y
Cx D

w

u
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where the dimension of y is nmeas and the dimension of u is ncon, into an
equivalent generalized plant

Purpose

Syntax

Description
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ex ax b
w

u

z

y
cx d

w

u

& = +
L
NM

O
QP

L
NM
O
QP = +

L
NM

O
QP

with

   d = [d11 d12

        d21 d22]

such that d12 has full column rank and d21 has full row rank. “Equivalent” means
that the two plants have the same transfer matrices.

The optional tolerance parameter tol is used in the various rank tests. It has the
default value 1e-12.

In verbose mode the routine displays a relative error based on the largest of the
differences of the frequency response matrices of the transformed and the original
plant at the frequencies 1, 2, ..., 10.

In the Example section of the manual page for the Polynomial Toolbox command
dsshinf the descriptor representation of a generalized plant is derived. When
considering the subsystem

z c rs u2 1= +( )

Examples
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two pseudo state variables are defined as x u x u3 4= =, & , which leads to the
descriptor equations

&x x

x u
3 4

30

=

= − +

The output equation is rendered as

z c rs u crx cu2 41= + = +( )

The output equation, however, equally well could be chosen as

z c rs u cx crx2 3 41= + = +( )

This brings the generalized plant in the form

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1

0 0 1 0

2 0

1 1

0 0

0 1

1 0 0 0

0 0

1

1

2

3

4

1

2

3

4

1

2

L

N

MMMM

O

Q

PPPP

L

N

MMMM

O

Q

PPPP
=

−

L

N

MMMM

O

Q

PPPP

L

N

MMMM

O

Q

PPPP
+

L

N

MMMMM

O

Q

PPPPP

L
NM

O
QP

L

N
MMM

O

Q
PPP

=
−

E

x

x

x

x

A

x

x

x

x

B

w

u

z

z

y

c cr

1 244 344 1 244 344 1 24 34

&

&

&

&

0 0 0

1 0

0 0

1 0

1

2

3

4

L

N
MMM

O

Q
PPP

L

N

MMMM

O

Q

PPPP
+

−

L

N
MMM

O

Q
PPP
L
NM

O
QP

C

x

x

x

x
D

w

u
1 244 344 124 34



Commands — Online reference

dssreg

For this plant we have

D D12 21
0

0
1=

L
NM
O
QP = −,

so that D12  does not have full rank. We apply dssreg to this plant for c = 0.1, r =
0.1.

c = 0.1; r = 0.1;

E = [1 0 0 0; 0 1 0 0; 0 0 1 0; 0 0 0 0];

A = [0 1 0 0; 0 0 0 0; 0 0 0 1; 0 0 -1 0];

B = [sqrt(2) 0; 1 1; 0 0; 0 1];

C = [1 0 0 0; 0 0 c c*r; -1 0 0 0];

D = [1 0; 0 0; -1 0];

ncon = 1; nmeas = 1;   

We now apply dssreg.

[a,b,c,d,e] = dssreg(A,B,C,D,E,nmeas,ncon)   

a =

     0     1     0     0

     0     0     0     0
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     0     0     0     1

     0     0    -1     0

b =

    1.4142         0

    1.0000    1.0000

         0    1.0000

         0    1.0000

c =

    1.0000         0         0         0

         0         0    0.1000    0.0100

   -1.0000         0         0         0

d =

    1.0000         0

         0    0.0100

   -1.0000         0

e =
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     1     0     0     0

     0     1     0     0

     0     0     1     0

     0     0     0     0   

We now have

D D12 21
0

1
1=

L
NM
O
QP = −,

so that the transformed plant is “regular.”

As a second example we consider the standard plant

&x x
w
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QP

1 1

1

1

for which neither D12  nor D21 has full rank. We obtain the following result.

E = 1; A = 1; B = [1 1]; C = [1; 1]; D = [0 0;0 0];

nmeas = 1; ncon = 1;

[a,b,c,d,e] = dssreg(A,B,C,D,E,nmeas,ncon)   
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a =

     1     0     0

     0     1     0

     0     0     1

b =

     1     1

     0     1

     1     0

c =

     1     1     0

     1     0     1

d =

     0     1

     1     0

e =

     1     0     0
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     0     0     0

     0     0     0   

Instead of a state representation of dimension 1 we now have a 3-dimensional
descriptor representation, which, however, is “regular.”

First consider the case that D21 does not have full row rank.

Let the rows of the matrix N span the left null space of E, so that NE = 0. Then by
multiplying the descriptor equation Ex Ax B w B u& = + +1 2  on the left by N we obtain
the set of algebraic equations 0 1 2= + +NAx NB w NB u . By adding suitable linear
combinations of the rows of this set of equations to the rows of the output equation
y C x D w D u= + +2 21 22  the rank of D21 may be increased without increasing the
dimension of the pseudo state x.

If after this operation D21 still does not have full row rank then we apply a suitable
transformation to the output equation y C x D w D u= + +2 21 22  so that it takes the
form

y
y

y
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where D211  has full row rank. It is easy to construct a matrix D212  so that
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D
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L
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Algorithm
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has full row rank. Following this we redefine the output equation as

y
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0

where ′x  is an additional component of the pseudo state. This component is
accounted for by adding the algebraic equation

0 212= ′ +x D w

to the descriptor equation. This increases the dimension of the pseudo state, of
course.

If D12  does not have full rank then the procedure as described is applied to the
“dual” system.

The macro dssreg displays error messages in the following situations.

• The input parameters have inconsistent dimensions.

• D12  is not tall or D21 is not wide.

• The relative error exceeds 1e-6. The relative error is computed on the basis of
the largest of the differences of the frequency responses of the system before
and after regularization at the frequencies 1, 2, …, 10.

In verbose mode the relative error is always reported.

Diagnostics
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dssrch H∞  optimization for a descriptor plant

dssmin dimension reduction of a descriptor system

See also
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echelon

Echelon (or Popov) form of a polynomial matrix

[E,U,ind] = echelon(D[,tol])

[E,U,ind] = echelon(D,'col'[,tol])

[E,U,ind] = echelon(D,'row'[,tol])

A polynomial matrix E is in column echelon form (or Popov form) if it has the
following properties (Kailath, 1980).

§ It is column reduced with its column degrees arranged in ascending order.

§ For each column there is a so-called pivot index i such that the degree of the
ith entry in this column equals the column degree, and the ith entry is the
lowest entry in this column with this degree.

§ The pivot indexes are arranged to be increasing.

§ Each pivot entry is monic and has the highest degree in its row.

A square matrix in column echelon form is both column and row reduced.

Given a square and column-reduced polynomial matrix D the commands

[E,U,ind] = echelon(D)

Purpose

Syntax

Description
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[E,U,ind] = echelon(D,'col')

compute the column echelon form E of D. The unimodular matrix U satisfies DU =
E. The first column of ind contains the pivot indices of E, the second column of
ind contains its column degrees, and the third column of ind contains its row
degrees.

Similarly, if D is row reduced then

[E,U,ind] = echelon(D,'row')

returns the row echelon form E of D while UD = E.  A polynomial matrix is in row
echelon form if it satisfies the properties listed above with 'column' replaced by
'row', and vice-versa.

A tolerance tol may be specified as an additional input argument. Its default value
is the global zeroing tolerance.

Consider the polynomial matrix

D = [ -3*s s+2

       1-s  1  ];

To find its column Hermite form and associated quantities we type

[E,U,ind] = echelon(D)   

MATLAB returns

Examples
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E =

     2 + s    -6

     1        -4 + s

Constant polynomial matrix: 2-by-2

U =

     0    -1

     1    -3

ind =

     1     1     1

     2     1     1   

A more complicated example is

D = [ 5*s+1   s^2+3*s+2   2*s^3+3*s^2+4*s+5

      3*s+4     2*s+1        s^3+s^2+2

       s+7      3+4*s       2+5*s+3*s^2    ];   

Its echelon form is

E = echelon(D)   
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E =

     1 + 5s    -2 - 17s + s^2     15 + 2.1e+002s

     4 + 3s    -15 - 10s          2e+002 + 1.4e+002s +

12s^2 + s^3

     7 + s     -25                3.1e+002

The algorithm follows Kailath (1980, pp. 485–486). From E = DU it follows that

D I
U

E
−

L
NM

O
QP = 0

A polynomial basis for the right kernel of [D –I] is built by application of the column-
searching algorithm to the Sylvester resultant of this matrix. If only the “primary”
dependent columns are selected then the set of columns of [U; E] is of minimal
degree and in polynomial column echelon form.

For the row echelon form D is required to be row reduced and the algorithm is
applied to the transpose of D.

The macro issues error messages when

§ an invalid input argument or matrix argument is encountered

§ invalid Not-a-Number or Infinite entries are found in the input matrices

§ the input matrix is not square

Algorithm

Diagnostics
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§ the input matrix is singular

§ an invalid option is encountered

§ the input matrix is not column or row reduced as required

tri triangular form of a polynomial matrix

hermite Hermite form of a polynomial matrix

smith Smith form of a polynomial matrix

See also
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eq, ne

Equality and inequality test for polynomial matrices P == Q, P ~= Q

A = (P==Q)

A = eq(P,Q)

A = eq(P,Q,tol)

A = (P~=Q)

A = ne(P,Q)

A = ne(P,Q,tol)

The command

A = (P==Q)

performs an elementwise comparison between the polynomial matrices P and Q
with tolerance activated through the global zeroing tolerance. P and Q must have
the same dimensions unless one is a scalar polynomial. A scalar polynomial is
compared with all entries.

A difference between the polynomial variables of P and Q causes a warning
message, but does not affect the result. Thus, (1+z) == (1+s) is 1.

The command

Purpose

Syntax

Description
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A = eq(P,Q)

works similarly. The command

A = eq(P,Q,tol)

works with the tolerance specified by the input tolerance tol.

The commands

A = (P~=Q)

A = ne(P,Q)

A = ne(P,Q,tol)

work similarly but return 0 where eq returns 1 and vice-versa.

Typing

P = [1+s 1+2*s];   

1+s == P   

results in

ans =

     1     0   

while

Examples
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1+s/3 == 1+0.3333333333*s   

returns

ans =

     1   

Likewise, typing

1+s ~= P   

results in

ans =

     0     1   

while

1+s/3 ~= 1+0.3333333333*s   

returns

ans =

     0   
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The macros eq and ne use standard MATLAB 5 and Polynomial Toolbox
operations.

The macros eq and ne returns an error message if

§ there are too few or too many input arguments

§ there are too many output arguments

§ the polynomial matrix dimensions do not agree

A warning is issued if the polynomial matrices have inconsistent variables.

Algorithm

Diagnostics
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evenpart, oddpart

Even and odd part of a polynomial

[Aeven,Aodd] = evenpart(A)

[Aeven,Aodd] = evenpart(A,'sqz')

[Aodd,Aeven] = oddpart(A)

[Aodd,Aeven] = oddpart(A,'sqz')

For a polynomial matrix

A s A A s A s A s A s A s A s A s A s A s( ) = + + + + + + + + + +0 1 2
2

3
3

4
4

5
5

6
6

7
7

8
8

9
9 L

the command

evenpart(A)

returns its even part in the “full” form

A s A A s A s A s A s( ) = + + + + +0 2
2

4
4

6
6

8
8 L

while the command

evenpart(A,'sqz')

returns it in the “squeezed” form

Purpose

Syntax

Description



Commands — Online reference

evenpart, oddpart

A s A A s A s A s A s( ) = + + + + +0 2 4
2

6
3

8
4 L

Similarly, the command

oddpart(A)

returns the even part in the “full” form

A s A s A s A s A s A s( ) = + + + + +1 3
3

5
5

7
7

9
9 L

while the command

evenpart(A,'sqz')

“squeezes” it to

A s A A s A s A s A s( ) = + + + + +1 3 5
2

7
3

9
4 L

If either case is used with two output arguments, the other part is also returned in
the same form.

For illustration, consider

A=mono(0:9)*[-1 1:9].'   

A =

 -1 + s + 2s^2 + 3s^3 + 4s^4 + 5s^5 + 6s^6 + 7s^7 + 8s^8 +

9s^9   

Example
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and check that

evenpart(A)

ans =

    -1 + 2s^2 + 4s^4 + 6s^6 + 8s^8

evenpart(A,'sqz')   

ans =

    -1 + 2s + 4s^2 + 6s^3 + 8s^4   

oddpart(A)   

ans =

     s + 3s^3 + 5s^5 + 7s^7 + 9s^9   

oddpart(A,'sqz')   

ans =

     1 + 3s + 5s^2 + 7s^3 + 9s^4   

The routine uses standard routines from the Polynomial Toolbox.

The macro returns error messages in the following situations:

• The first input argument is not a polynomial object

Algorithm

Diagnostics
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• The input string is incorrect

pol polynomial matrix constructor

{}, subsref       curly brackets operator and subscripted reference

See also
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fact

Polynomial matrix factor extraction

AR = fact(A,z)

AR = fact(A,z,tol)

Given a non-singular polynomial matrix A and a vector z containing a subset of the
zeros of A, the instruction

AR = fact(A,z)

extracts from A a minimum degree, column and row reduced right polynomial
matrix factor AR such that z contains all the zeros of AR and

A = AL*AR

The left factor AL can be retrieved with the instruction AL = A/AR.

An optional tolerance tol may be specified as an additional input argument. Its
default value is the global zeroing tolerance.

Consider the polynomial matrix

A = [ 16-4*s+4*s^2       9-4*s+3*s^2

     36-16*s+12*s^2     21-14*s+9*s^2 ];   

Purpose

Syntax

Description

Examples
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The matrix has the roots

roots(A)   

ans =

   -3.0000

    1.0000

    1.0000   

We extract a right factor corresponding to the double root at 1 with the help of the
command

AR = fact(A,[1 1])   

AR =

     1 - 2s + s^2     0

     2                1   

The left factor is

AL = A/AR   

AL =

    -2     9 - 4s + 3s^2
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    -6     21 - 14s + 9s^2  

The algorithm is based on interpolation and relies on numerically reliable
subroutines only. It makes use of the macro charact to compute the generalized
characteristic vectors of the polynomial matrix.

The macro returns an error message in the following circumstances

• The input matrix is not square

• The second input argument is missing

• An invalid second input argument is encountered

• The input matrix is singular

• An invalid zero characteristic vector is obtained

charact compute the generalized characteristic verstors corresponding to
a given root

spcof, spf spectral (co-)factorization

Algorithm

Diagnostics

See also
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fliplr, flipud

Flip polynomial matrices left-right or up-down

B = fliplr(A) 

B = flipud(A) 

The command

B = fliplr(A)

returns the polynomial matrix A with its columns flipped in the left-right direction,
that is, about a vertical axis. The command

B = flipud(A)

returns the polynomial matrix A with its columns flipped in the up-down direction,
that is, about a horizontal axis.

The commands

P =[ 1+s    2*s^2    4

     -2    3+4*s^3  5+6*s ];

Q = fliplr(P)   

produce the response

Purpose

Syntax

Description

Examples
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 Q =

     4          2s^2         1 + s

     5 + 6s     3 + 4s^3    -2   

while the commands

P =[ 1+s    2*s^2

     -2    3+4*s^3

      5     6+7*s  ];

Q = flipud(P)   

produce the response

 Q =

     5         6 + 7s

    -2         3 + 4s^3

     1 + s     2s^2   

The routines use standard routines from the Polynomial Toolbox.

The macros display error messages if they have too many input or output
arguments.

Algorithm

Diagnostics
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rot90 rotate a polynomial matrix by 90 degreesSee also
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gld, grd

Greatest left and right divisor

G = gld(A1,A2,...,Ak[,tol])

G = gld(A1,A2,...,Ak,'gau'[,tol])

G = gld(A1,A2,...,Ak,'syl'[,tol])

[G,U] = gld(A1,A2,...,Ak,'syl'[,tol])

G = grd(A1,A2,...,Ak[,tol])

G = grd(A1,A2,...,Ak,'gau'[,tol])

G = grd(A1,A2,...,Ak,'syl'[,tol])

[G,U] = grd(A1,A2,...,Ak,'syl'[,tol])

The command

G = gld(N1,N2,...,Nk)

computes a greatest left divisor G of several polynomial matrices N1, N2, …, Nk
(for k > 0) that all have the same number of rows. The columns of G form a
polynomial basis for the module spanned by the columns of N = [N1 N2 … Nk].
Note that this basis is not necessarily of minimal degree. The number of rows in G
equals the rank of N. If N has full row rank then G is square.

Purpose

Syntax

Description
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The command

G = gld(N1,N2,...,Nk,'gau')

computes the divisor through a modified version of Gaussian elimination. This
method is preferable esthetically and generally results in a low degree divisor. It is
the default method.

The command

G = gld(N1,N2,...,Nk,'syl')

computes the divisor through stable reductions of Sylvester matrices. This method
is preferable numerically but may result in a high degree divisor. The command

[G,U] = gld(N1,N2,...,Nk,'syl')

in addition returns a unimodular matrix U such that

NU G= 0 0L

Note that the second output argument is only allowed if the 'syl' option is used.

For two input matrices N1 and N2 the matrix U may be split into two pairs of right
coprime polynomial matrices (P, Q) and (R, S) such that

 U
P R

Q S
=
L
NM

O
QP
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so that

N1 N2

N1 N2

∗ + ∗ =
∗ + ∗ =
P Q G

R S 0

The matrices Mi such that Ni = G*Mi may be recovered with the help of the
command

Mi = axb(G,Ni)

A tolerance tol may be specified as an additional input argument. Its default value
is the global zeroing tolerance.

Similarly to gld the commands

G = grd(N1,N2,...,Nk)

G = grd(N1,N2,...,Nk,'gau')

compute a greatest right common divisor G of several polynomial matrices N1, N2,
..., Nk (with k > 0) that all have the same column dimension. The rows of G form a
polynomial basis for the module spanned by the rows of N = [N1' N2' .. Nk']'. This
basis is not necessarily of minimal degree. The number of rows in G is equal to the
rank of N. If N has full column rank then G is square.

The command

[G,U] = GRD(N1,N2,...,Nk,'syl')

additionally returns a unimodular matrix U such that
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NU

G

=

L

N

MMMM

O

Q

PPPP
0

0

M

For two input matrices N1 and N2 the matrix U may be split into two pairs of left
coprime polynomial matrices (P, Q) and (R, S) such that

 U
P R

Q S
=
L
NM

O
QP

and hence

         
P Q G

R S

* *

* *

N1 N2

N1 N2

+ =
+ = 0

The matrices Mi such that Ni = Mi*G may be recovered with the command

Mi = xab(G, Ni)

Let

A1 = [ s-s^2

     2*s-s^2 ];

A2 = [  -1+s     -1+s

       -1+s     -2+s ];   

Examples
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A common left divisor follows as

G1 = gld(A1,A2)   

G1 =

    -1 + s     0

     0         1   

By application of

F1 = axb(G1,A1), F2 = axb(G1,A2)   

the factors that remain after division follow as

F1 =

    -s

     2s - s^2

F2 =

     1         1

    -1 + s    -2 + s    

The Sylvester method results in the left common divisor

[G2,U] = gld(A1,A2,'syl')   
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G2 =

     1.4 - 1.4s     0

     2.1 - 1.4s     0.71

U =

     0        0        0.71

    -0.71     0.71     0

    -0.71    -0.71     0.71s   

G1 and G2 are equivalent within elementary row operations.

The routine gld is the dual of grd.

The algorithm 'gau' of grd relies on Gaussian elimination of the resultant matrix
of the polynomial matrix A = [A1; A2; ..., Ak] as described by Barnett
(1983).

The algorithm 'syl' relies on transforming A to lower triangular form. This is done
in a numerically reliable way using the macro echelon.

The macros issue error messages when

§ an invalid input argument is encountered

§ invalid Not-a-Number or Infinite entries are found in the input matrices

Algorithm

Diagnostics
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§ the input matrices have inconsistent dimensions

§ the input matrices have inconsistent variables

§ an invalid method is encountered

axb, xab linear polynomial matrix equation solvers

ldiv, rdiv left and right polynomial matrix division

minbasis minimal basis

echelon, hermite echelon and Hermite form of polynomial matrices

llm, rlm least multiples of polynomial matrices

See also
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gram

Gramian of a polynomial matrix fraction

G = gram(N,D[,tol])

G = gram(N,D,'l'[,tol])

G = gram(N,D,'r'[,tol])

The  commands

G = gram(N,D)

G = gram(N,D,'l')

result in the computation of the Gramian of the stable croprime polynomial matrix
fraction H D N= −1 . In the continuous-time case the Gramian is defined as

G H j H j dT= −

−∞

∞z1
2π

ω ω ω( ) ( )

and in the discrete-time case as

G H e H e dT j j= −

−
z1

2π
ωω

π

π
ω( ) ( )

Purpose

Syntax

Description
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The command

G = gram(N,D,'r')

computes the Gramian of the stable rational matrix H ND= −1  with N and D right
coprime.

A tolerance tol may be specified as an additional input argument. Its default value
is the global zeroing tolerance.

The controllability and observability Gramians of a state space system with
matrices A, B, C, D may be  computed as

Wc = gram(B,v*I-A,'l')

Wo = gram(C,v*I-A,'r')

 where v is the variable and I stands for the identity matrix of the correct dimension.

Consider the state space system defined by

A = [ 0  1

     -3 -4 ];

B = [ 1

      1 ];

C = [ 1  0 ];   

Examples
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The controllability Gramian follows as

Wc = gram(B,s*eye(2)-A,'l')   

Wc =

    1.1667   -0.5000

   -0.5000    0.5000   

while the observability Gramian is given by

Wo = gram(C,s*eye(2)-A,'r')   

Wo =

    0.7917    0.1667

    0.1667    0.0417   

As a discrete-time example, consider

N = 1; D = z-0.5;   

We then find

G = gram(N,D)   

G =

    1.3333   
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For the continuous-time case the algorithm relies on the solution of a two-sided
polynomial matrix equation as described in Kwakernaak (1992). For the discrete-
time case a similar solution may be developed.

The macro dssmin displays error messages in the following situations

• There are not enough input arguments

• An unknown command option is encountered

• The input matrices have inconsistent dimensions

• The input matrices are not coprime

• The denominator matrix is not stable

• The computation of the Gramian failed

A warning follows if the input matrices have inconsistent variables. In this case both
variables are set equal to the default global variable.

h2norm computation of the H2  norm of a matrix fraction

Algorithm

Diagnostics

See also
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h2norm, hinfnorm

H2  norm of a polynomial matrix fraction

H∞  norm of a polynomial matrix fractions

n = h2norm(N,D[,tol])

n = h2norm(N,D,'l'[,tol])

n = h2norm(N,D,'r'[,tol])

[ninf,omegamax] = hinfnorm(N,D)

[ninf,omegamax] = hinfnorm(N,D,'l')

[ninf,omegamax] = hinfnorm(N,D,'r')

The commands

n2 = h2norm(N,D)

n2 = h2norm(N,D,'l')

return the H2  norm of the stable coprime polynomial fraction G D N= −1 , while

n2 = h2norm(N,D,'r')

Purpose

Syntax

Description
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returns the H2  norm of G ND= −1 . If N and D have s or p as variable then the
continuous-time norm is used, if it is z, d, q or z−1 then the discrete-time norm
applies.

A tolerance tol may be specified as an additional input argument. Its default value
is the global zeroing tolerance.

The commands

ninf = hinfnorm(N,D)

ninf = hinfnorm(N,D,'l')

return the H∞  norm of the stable rational matrix G D N= −1 , while

ninf = hinfnorm(N,D,'r')

computes the H∞  norm of G ND= −1 . The command

[ninf,omegamax] = hinfnorm(N,D)

possibly combined with the 'l' or 'r' option, also returns the frequency omegamax
where G j( )ω 2  achieves its maximum. The norm is computed in continuous or
discrete time depending on the variable of N and D.

Define the polynomial matrices

D = [ s+1  2

       1  s+4 ];

Examples
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N = eye(2);   

Then

h2norm(N,D)   

returns

ans =

    1.1726   

while

[ninf,omegamax] = hinfnorm(N,D)   

returns

ninf =

    2.3354

omegamax =

     0   

For the discrete-time system defined by

N = 1; D = z-0.5;   

the norms are computed as
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h2norm(N,D)   

ans =

    1.1547   

and

hinfnorm(N,D)   

ans =

     2   

The algorithm for the computation of the H2  norm relies on the computation of the
Gramian of the matrix fraction (Kwakernaak, 1992).

The H∞  norm is computed by searching for the peak value of

 G j( )ω 2 , ω ∈ ∞[ 0, ] ,   or   G e j( )ω
2

,ω π∈ [ 0, ] ,

first on a coarse grid, which then is refined.

The macros returns error messages in the following circumstances:

§ There are not enough input arguments or too many output arguments

§ An unknown command option is encountered

§ The input matrices have inconsistent dimensions

Algorithm

Diagnostics
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§ (H2  case only) The computation of the Gramian failed

Warnings follow if

§ The denominator matrix is not stable so that the H2  or H∞ norm is infinite

§ (H2  case only) The matrix fraction is not strictly proper, so that the H2  norm is
infinite

§ (H∞  case only) D has a pole on the imaginary axis so that the norm is infinite

§ (H∞  case only) The fraction is nonproper so that the norm is infinite

§ (H∞  case only) The denominator is zero to working precision

norm computation of various norms

gram computation of the Gramian

See also
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hermite

Hermite form of a polynomial matrix

[H,U,ind] = hermite(A[,tol])

[H,U,ind] = hermite(A,'col'[,tol])

[H,U,ind] = hermite(A,'row'[,tol])

An n m× polynomial matrix A of rank r is in column Hermite form if it has the
following properties.

§ It is lower triangular

§ The diagonal entries are all monic

§ Each diagonal entry has higher degree than any entry on its left

§ In particular, if the diagonal element is constant then all off-diagonal elements
in the same row are zero

§ If n > r then the last n–r columns are zero

The nomenclature in the literature is not consistent. Some authors refer to this as
the row Hermite form.

The polynomial matrix A is in row Hermite form if it is the transpose of a matrix in
column Hermite form.

Purpose

Syntax

Description
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The commands

H = hermite(A)

H = hermite(A,'col')

compute the column Hermite form of A. The command

[H,U,ind] = hermite(A)

also provides a unimodular reduction matrix U such that AU = H and a row vector
ind such that ind(i) is the row index of the uppermost non-zero entry in the ith
column of H. Note that ind(i) = 0 if the ith column of H is zero.

The command

hermite(A,'row')

computes the row Hermite form of A.

The macro hermite is partly based on macro tri. The optional input arguments
'gau' and 'syl' for tri may be specified through hermite .

An optional tolerance tol may be specified as an additional input argument. Its
default value is the global zeroing tolerance.

Consider the polynomial matrix

A = [ s^2   0    1

       0   s^2  1+s];   

Examples



Commands — Online reference

hermite

To find its column Hermite form and associated quantities we type

[H,U,ind] = hermite(A)   

MATLAB returns

H =

     1         0       0

     1 + s     s^2     0

U =

     0    -0.25             0.5

     0     0.75 - 0.25s     0.5 + 0.5s

     1     0.25s^2         -0.5s^2

ind =

     1     2     0   

For the row Hermite form the command

hermite(A,'row')   

returns the original matrix

ans =
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     s^2     0       1

     0       s^2     1 + s   

The macro hermite is based on tri. First, tri is called to compute a staircase
form. Second, the off-diagonal terms are reduced with the macro rdiv. Finally, the
diagonal terms are made monic.

The macro hermite issues error messages if

§ an invalid input argument or matrix argument is encountered

§ invalid Not-a-Number or Infinite entries are found in the input matrices

§ the reduction fails in one of several ways

In the latter case the tolerance should be modified.

tri triangular form of a polynomial matrix

smith Smith form of a polynomial matrix

lu LU factorization for polynomial matrices

Algorithm

Diagnostics

See also
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horzcat, vertcat

horzcat, vertcat

Horizontal and vertical concatenation for polynomial matrix objects

C = [A B]

C = [A,B]

C = horzcat(A,B)

C = [A

     B]

C = [A;B]

C = vertcat(A,B)

The command

C = [A B]

effects the horizontal concatenation of the polynomial matrices A and B. A and B
must have the same number of rows. The commands

C =  [A,B]

and

Purpose

Syntax

Description
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horzcat, vertcat

C = horzcat(A,B)

have the same result. Any number of matrices can be concatenated within one pair
of brackets.

The command

C = [A

     B]

effects the horizontal concatenation of the polynomial matrices A and B.  A and B
must have the same number of columns.  The commands

C =  [A,B]

and

C = vertcat(A,B)

have the same result. Any number of matrices can be concatenated within one pair
of brackets.

Horizontal and vertical concatenation can be combined together as for standard
MATLAB matrices.

Typing

P = [1+s 1+2*s]   

results in

Examples
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horzcat, vertcat

 P =

     1 + s     1 + 2s   

 Q = [P; 0 1]

 Q =

     1 + s     1 + 2s

     0         1   

The macros use standard MATLAB 5 and Polynomial Toolbox operations.

The macros horzcat and vertcat return an error message if not all matrices on
a row or in a column in the bracketed expression have the same number of rows or
columns.

Algorithm

Diagnostics
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hurwitz

Create the Hurwitz matrix of a polynomial matrix

H = hurwitz(P)

H = hurwitz(P,k)

Given a polynomial matrix P the command

H = hurwitz(P,k)

creates the constant Hurwitz matrix H  of order k ( k k×  blocks)  corresponding to
the polynomial matrix P. If

P v P P v P v P vd
d( ) = + + + +0 1 2

2 L

then

H

P P P

P P P

P P P

P P P

P P P

k

d d d

d d d

d d d

d d d

d d d

=

L

N

MMMMMMMMM

O

Q

PPPPPPPPP

− − −

− −

− − −

− −

− − −

1 3 5

2 4

1 3 5

2 4

1 3 5

0

0

0 0 0

L L L L

L L L L

L L L

L L L

L

L L L L L L L

L L L L L L L

M

M

M

block row 1

block row 2

block row 3

block row

Purpose

Syntax

Description
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hurwitz

The default value of k is d.

Consider the polynomial matrix

P = [1+s 2*s^2 3];   

Then the command

H = hurwitz(P)   

results in

H =

     1     0     0     0     0     0

     0     2     0     1     0     3   

If

P = mono(0:3)*[1; 2; 3; 4]

P =

     1 + 2s + 3s^2 + 4s^3   

then

H = hurwitz(P)   

returns

Examples
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H =

     3     1     0

     4     2     0

     0     3     1  

The macro uses basic operations from MATLAB 5 and the Polynomial Toolbox.

The macro returns an error message if the first input argument is not a polynomial
object, or if the requested order is not a nonnegative integer.

stabint stability interval test

Algorithm

Diagnostics

See also
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imag

Imaginary part of a polynomial matrix

X = imag(Z)

For a polynomial matrix Z, the command X = imag(Z) returns the polynomial
matrix X whose coefficients are the imaginary parts of the corresponding
coefficients of Z.

If

P = [(1+i)*s (1-i)*s+s^2];   

then

imag(P)   

results in

ans =

     s    -s   

The macro imag uses standard MATLAB operations.

The macro displays no error messages.

real real part of a polynomial matrix

Purpose

Syntax

Description

Examples

Algorithm

Diagnostics

See also
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ctranspose (') complex conjugate transpose of a polynomial matrix

conj conjugate of a polynomial matrix
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inertia

Inertia of a polynomial matrix

in = inertia(A)

in = inertia(A,tol)

The commands

in = inertia(A)

in = inertia(A,tol)

return the inertia of the polynomial matrix A. The inertia is the triple in = [ns n0
nu], with ns the number of stable roots of A, n0 the number of marginally stable
roots, and nu the number of unstable roots.

The definition of stability depends on the polynomial matrix indeterminate. The root
r of a polynomial matrix is considered as stable

• with indeterminate s or p if real(r) < 0

• with indeterminate z^-1 or d  if abs(r) > 1

• with indeterminate z or q if abs(r) < 1

Purpose

Syntax

Description
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The optional input parameter tol is a tolerance which is used to determine if
certain coefficients that arise in the construction of the Routh array are zero. Its
default value is the global zeroing tolerance.

We consider the polynomial matrix

P = [1+s 2+s^2 3; 4-s 5 6+s^2; 1 1 1]

P =

     1 + s     2 + s^2     3

     4 - s     5           6 + s^2

     1         1           1   

We compute the roots and the inertia of P

rtsP = roots(P), inP = inertia(P)   

rtsP =

        0

  -0.2980 + 1.8073i

  -0.2980 - 1.8073i

   0.5961

inP =

Example
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     2     1     1   

The algorithm and its code are from Meinsma (1995).

The macro issues an error message if the input matrix is not square.

isstable stability of a polynomial matrix

Algorithm

Diagnostics

See also



Commands — Online reference

isempty, isfinite, isinf, isnan, isreal

isempty, isfinite, isinf, isnan, isreal

Detect state

s = isempty(P)

S = isfinite(P)

S = isinf(P)

S = isnan(P)

s = isreal(P)

The command

s = isempty(P)

returns the logical true (1) if P is an empty polynomial matrix and the logical false
(0) otherwise. An empty polynomial matrix has at least one dimension of size zero,
for instance, 0 0×  or 0 5× .

The command

S = isfinite(P)

returns an array S of the same size as P containing the logical true (1) if the
elements of the polynomial matrix have all coefficients finite and the logical false
(0) if they have infinite or NaN coefficients.

Purpose

Syntax

Description
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isempty, isfinite, isinf, isnan, isreal

The command

S = isinf(P)

returns returns an array S of the same size as P containing the logical true (1) if
any of the coefficients of the corresponding entry of P is +Inf or -Inf and the
logical false (0) if it is not.

The command

S = isnan(P)

returns an array S of the same size as P containing the logical true (1) if any of the
coefficients of the corresponding entry of P is NaN and the logical false (0) if it is
not.

The command

s = isreal(P)

returns the logical true (1) if all the entries of P have real coefficients and the logical
false (0) otherwise.

We illustrate the various commands without further comments.

§ isempty

isempty(pol(zeros(0,3)))   

ans =

Examples
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isempty, isfinite, isinf, isnan, isreal

     1   

§ isfinite

P = [1+s Inf]; isfinite(P)  

ans =

       1        0   

§ isinf

isinf(P)   

ans =

        0       1   

§ isnan

P = [1+s 0/0]; isnan(P)   

Warning: Divide by zero.

ans =

       0        1   

§ isreal

isreal(P)   
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isempty, isfinite, isinf, isnan, isreal

ans =

     1   

The macros rely on standard MATLAB 5 and Polynomial Toolbox operations.

The macros display no error messages.

real, imag real or imaginary part of a polynomial matrix

Algorithm

Diagnostics

See also
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isfullrank, isprime, isproper, issingular, isstable, isunimod

isfullrank, isprime, isproper, issingular, isstable, isunimod

Detect state

s = isfullrank(P[,tol])

[s,rts] = isprime(P[,tol])

[s,rts] = isprime(P,'l'[,tol])

[s,rts] = isprime(P,'r'[,tol])

s = isproper(N,D[,tol])

s = isproper(N,D,'l'[,tol])

s = isproper(N,D,'r'[,tol])

s = isproper(N,D,'strict'[,tol])

s = isproper(N,D,'l','strict'[,tol])

s = isproper(N,D,'r','strict'[,tol])

s = issingular(P[,tol])

s = isstable(P[,tol])

s = isunimod(P[,tol])

Purpose

Syntax
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isfullrank, isprime, isproper, issingular, isstable, isunimod

Isfullrank

The command

s = isfullrank(P)

returns the logical true (1) if P has full rank rank and the logical false (0) otherwise.
A polynomial matrix has full rank if rank(P) = min(size(P)).

The optional tolerance tol is interpreted as in the macro rank.

Isprime

The commands

isprime(P)

isprime(P,'l')

return 1 if the polynomial matrix P is left prime and 0 if it is not. A polynomial matrix
P(s) is left prime if it has full row rank for all s in the complex plane, and right prime
if it has full column rank. In the form

isprime(P,'r')

the command tests whether the matrix is right prime. In the form

[r,rts] = isprime(P)

[r,rts] = isprime(P,'l')

Description
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isfullrank, isprime, isproper, issingular, isstable, isunimod

[r,rts] = isprime(P,'r')

the optional output argument rts returns the roots of P, that is, those points in the
complex plane where P loses rank:

§ If P is prime then rts is empty.

§ If P is tested to be not left prime then rts contains those points where P loses
row rank. If rts is returned as NaN then P does not have full row rank.

§ If P is tested to be not right prime then rts contains those points where P
loses column rank. If rts is returned as NaN then P does not have full column
rank.

If P is square and prime then P is unimodular.

As last input argument an optional tolerance tol may be included that is used to
test whether P has any roots. Its default value is the global zeroing tolerance.

Isproper

A polynomial matrix fraction H D N= −1  or H ND= −1  in the variables s, p, z or q is
proper if H( )∞  is finite, and strictly proper if H( )∞ = 0 . If the variable is d or z−1

then properness or strict properness depends on whether H(0)  is finite or zero.

Given two polynomial matrices N and D, the commands

isproper(N,D)
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isproper(N,D,'l')

return 1 if the left matrix fraction D N−1  is a proper rational function and 0 if it is not.
Similarly,

isproper(N,D,'r')

returns 1 if the right matrix fraction ND−1  is a proper rational function, and 0
otherwise.

The command

isproper(N,D,'strict')

possibly combined with the 'l' or 'r'option, tests if the matrix fraction is strictly
proper.

A tolerance tol may be specified as an additional input argument. Its default value
is the global zeroing tolerance.

Issingular

The command

s = issingular(P)

returns the logical true (1) if the square polynomial matrix P is singular and 0
otherwise. The optional tolerance tol is interpreted as in the macro rank.
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Isstable

The command

s = isstable(P)

returns the logical true (1) if P is stable and the logical false (0) otherwise. The
definition of stability depends on the polynomial matrix variable symbol. A
polynomial matrix with roots zi is considered as stable

§ for the variable symbols s or p:   if  real(zi) < 0

§ for the variable symbols z^-1 or d: if  abs(zi) > 1

§ for the variable symbols z or q:   if  abs(zi) < 1

for all i. It is considered unstable otherwise. If the matrix is constant then it is
considered unstable.

A tolerance tol may be specified as an additional input argument. It is used in
testing whether an element of the Routh array is nonpositive. Its default value is the
global zeroing tolerance times 1e-8.

Isunimod

The command

s = isunimod(P)



Commands — Online reference
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returns 1 if the polynomial matrix P is unimodular and 0 if it is not.  An optional
tolerance tol may be included. Its default value is the global zeroing tolerance.

Isfullrank

Define

P = [ 1  s

      1  s ];   

Obviously

isfullrank(P)   

returns

ans =

     0   

Isprime

The command

[r,rts] = isprime(P)   

returns

r =

Examples



Commands — Online reference
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     0

rts =

   NaN   

because P does not have full rank. Define

D = (1+s)^2; N = 1+s;   

Then

[r,rts] = isprime([D N])   

correctly returns

r =

     0

rts =

   -1.0000   

Isproper

Define

D = (1+s)^2;

N = [ 2+s s^2 ];   
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Then

isproper(N,D)

returns

ans =

     1   

while

isproper(N(1,1),D,'strict')

also returns

ans =

     1   

Issingular

The command

issingular(P)   

correctly yields

ans =

     1   
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Isstable

Given the polynomials

S = 2+s; Z = 2+z; Zi = 2+zi;

the stability checks successively return

isstable(S)

ans =

     1   

isstable(Z)

ans =

     0   

isstable(Zi)

ans =

     1   

Isunimod

Let

P = prand(2,2,2,'uni')   
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P =

    -0.59 + s + 0.59s^2    -1.7 - 0.61s

     0.96 - 0.97s           1   

Then

isunimod(P)   

ans =

     1   

confirms that P is unimodular.

Isfullrank

The macro isfullrank calls rank to compute the rank of P.

Isprime

The n m×  input argument P is “squared down” by postmultiplying it by an m n×
random constant matrix W1 and is further conditioned by premultiplying it by a
square constant random matrix V1. Subsequently d s V P s W( ) det ( )= 1 1  is computed.
Any value of s where P(s) loses rank is a root of d. Which of the roots of d actually
makes P lose rank is tested by checking which of the roots of d is also a root of
det ( )V P s W2 2  with V2  and W2  further random matrices of the correct dimensions.

Right primeness of P is verified by testing P' for left primeness.

Algorithm
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Isproper

If the variable is d or z−1 then the fraction is proper if D(0)  is nonsingular and
strictly proper if D(0)  is nonsingular and N(0) = 0 .

If the variable is s, p, z or q then first D is transformed to column or row reduced
form as needed, and properness or strict properness is established by comparing
the column or row degrees of N and D.

Isstable

Stability of the polynomial matrix P is tested by applying the continuous- or
discrete-time Routh-Hurwitz test to det P.

Isunimod

First the determinant is computed without zeroing. If the determinant is nonzero
and finite and the constant coefficient matrix of the determinant is at least 1/tol
times greater than the other terms then the matrix is declared unimodular.

If the determinant is zero or infinite then the rank of the matrix is checked using
reliable methods. The determinant is scale-sensitive and concluding the singularity
from the zero determinant is numerically dangerous.

If the rank of the matrix is not full then the result of isunimod is 0 and a warning
message saying “Matrix is singular to working precision” is displayed.
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If the determinant is zero or infinite but the matrix appears to have full rank then the
determinant has under- or overflown. In this case an attempt is made to multiply
the input matrix by a suitable constant matrix to make the leading or closing
coefficient of the determinant equal to one. The coefficients of the determinant of
the scaled matrix are then compared to establish unimodularity. If no suitable
scaling matrix is found then the macro returns 0 and displays a warning message
saying “Matrix is badly scaled.” This happens very rarely.

The macro isprime complains if it encounters an unknown option, and
issingular, isstable and isunimod if the input polynomial matrix is not
square.

rank rank of a polynomial matrix

gld, grd greatest left or right divisor

Diagnostics

See also
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kharit

Computation of Kharitonov polynomials and robust stability test for an interval
polynomial

[stab,K1,K2,K3,K4] = kharit(pmin,pmax)

[stab,K1p,K2p,K3p,K4p,K1n,K2n,K3n,K4n] = kharit(pmin,pmax)

The scalar real interval polynomial

p s q q q si i
i

i

n

( , ) [ , ]= − +

=
∑

1

is characterized by the two polynomials

p s q si
i

i

n

min( ) = −

=
∑

1

 and p s q si
i

i

n

max( ) = +

=
∑

1

The command

[stab,K1,K2,K3,K4] = kharit(pmin,pmax)

computes the four Kharitonov polynomials

Purpose

Syntax

Description
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kharit

K s q q s q s q s q s q s q s

K s q q s q s q s q s q s q s

K s q q s q s q s q s q s q s

K s q q s q s q s q s q s q s

1 0 1 2
2

3
3

4
4

5
5

6
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4 0 1 2
2
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6
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= + + + + + + +
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L

L
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If all the interval polynomial have invariant degree and all the Kharitonov
polynomials are stable then p s q( , )  is robustly stable and stab is returned as 1.

If the interval polynomial has complex coefficients and is given by

p s q r q q j r r si i i i
i

i

n

( , , ) [ , ] [ , ]= +− + − +

=
∑ e j

1

then it is characterized by two polynomials pmin  and pmax  with complex
coefficients. The command

[stab,K1p,K2p,K3p,K4p,K1n,K2n,K3n,K4n] = kharit(pmin,pmax)

then returns the eight complex Kharitonov polynomials

K s q jr q jr s q jr s q jr s

K s q jr q jr s q jr s q jr s

K s q jr q jr s q jr s q jr s

K s q jr q
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2

3 3
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3 3
3
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2

3 3
3

4 0 0 1
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= + +

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) (

L

L

L

+ + + + + ++ + − − −jr s q jr s q jr s1 2 2
2

3 3
3) ( ) ( ) L
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K s q jr q jr s q jr s q jr s

K s q jr q jr s q jr s q jr s

K s q jr q jr s q jr s q jr s

K s q jr q
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If all the complex Kharitonov polynomials are stable and their degree is invariant
then the complex interval polynomial p s q r( , , )  is robustly stable and stab is
returned as 1.

If p is a matrix, then the macro works entry-wise.

Noce: For discrete-time polynomials, the function formally works as described
above but robust stability cannot be concluded from the stability of the Kharitonov
polynomials.

The interval polynomial (Barmish 1994, p. 69)

p s q s s s( , ) . , . . , . . , . . , .= + + +0 25 125 0 75 125 2 75 3 25 0 25 1252 3 ,

is defined by its bounding polynomials

pmin = pol([0.25 0.75 2.75 0.25],3)

pmin =

     0.25 + 0.75s + 2.8s^2 + 0.25s^3   

and

Example
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pmax = pol([1.25 1.25 3.25 1.25],3)

pmax =

     1.3 + 1.3s + 3.3s^2 + 1.3s^3   

Its robust stability is confirmed and the four Kharitonov polynomials are computed
by

[stab,K1,K2,K3,K4] = kharit(pmin,pmax)   

stab =

     1

K1 =

     0.25 + 0.75s + 3.3s^2 + 1.3s^3

K2 =

     1.3 + 1.3s + 2.8s^2 + 0.25s^3

K3 =

     1.3 + 0.75s + 2.8s^2 + 1.3s^3

K4 =

     0.25 + 1.3s + 3.3s^2 + 0.25s^3   
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The routine uses standard routines from the Polynomial Toolbox.

The macro returns error messages in the following situations:

• The input arguments are not polynomial objects

• The input matrices have inconsistent dimensions

It displays warning messages if

• The input polynomials are not of a continuous-time nature, that is, their variable
is neither s nor p

• The interval polynomial is not degree invariant

khplot plot Kharitonov rectangles

Algorithm

Diagnostics

See also
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khplot

Plotting Kharitonov rectangles for an interval polynomial to test its robust stability
by the Zero Exclusion Condition

khplot(pmin,pmax,omega)

khplot(pmin,pmax,omega,'new')

The scalar real interval polynomial

p s q q q si i
i

i

n

( , ) [ , ]= − +

=
∑

1

is characterized by the two polynomials

p s q si
i

i

n

min( ) = −

=
∑

1

 and p s q si
i

i

n

max( ) = +

=
∑

1

Its uncertainty bounding set

Q q q q q q q q i nn i i i= = ∈ =− +: , , , , , , , ,1 1 2K Kb g{ }

is a box in the space of parameters.

For a fixed frequency ω ω= 0 , the command

Purpose

Syntax

Description
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khplot(pmin,pmax,omega0)

plots the set of all possible values that p j q( , )ω 0  may assume as q  ranges over the
box Q , or more formally, the subset of complex plane given by

p j Q p j q q Q( , ) ( , ):ω ω0 0= ∈l q
This is called the Kharitonov rectangle at the frequency ω 0 .

If  omega is a vector of frequencies then the command

khplot(pmin,pmax,omega)

plots the Kharitonov rectangles “in motion.” This may be used a simple graphical
check for robust stability of p s q( , )  based on the well-known Zero Exclusion
Condition.

The command

khplot(pmin,pmax,omega,'new')

opens a new figure window for the plot leaving any existing figure windows
unchanged.

Noce: The macro plots a correct value set p j Q( , )ω  only for real omega and hence
it should only be used to test robust stability with the imaginary axis as a boundary.
For the general case of complex frequencies, such as on the unit circle when
testing for discrete-time robust stability, the resulting value set is not a rectangle
and the more general macro ptoplot must be used.
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Motion of Kharitonov rectangle. The interval polynomial (Barmish 1994, p. 74)

p s q s s s( , ) . , . . , . . , . . , .= + + +0 25 125 0 75 125 2 75 3 25 0 25 1252 3 ,

is defined by its bounding polynomials

pmin = pol([0.25 0.75 2.75 0.25],3)

pmin =

     0.25 + 0.75s + 2.8s^2 + 0.25s^3   

and

pmax = pol([1.25 1.25 3.25 1.25],3)

pmax =

     1.3 + 1.3s + 3.3s^2 + 1.3s^3   

The motion of its Kharitonov rectangle p j Q( , )ω  for twenty evenly spaced
frequencies between ω = 0  and ω = 1 is produced by the command

khplot(pmin,pmax,0:.05:1)

It is shown in Fig. 3.

Example 1
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Fig. 3. Motion of the Kharitonov rectangles

Robust stability test by the Zero Exclusion Condition. Consider the interval
polynomial (Barmish 1994, p. 80)

Example 2
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p j q s s s

s s s

( , ) . , . . , . . , . . , .

. , . . , .

ω = + + +

+ + +

0 45 0 55 195 2 05 2 95 3 05 5 95 6 05

3 95 4 05 3 95 4 05

2 3

4 5 6

The first step in the graphical test for robust stability requires that we guarantee
that at least one polynomial in the family is stable. Using the midpoint of each
interval we obtain

pp0 = pol([0.5 2 3 6 4 4 1],6)

pp0 =

     0.5 + 2s + 3s^2 + 6s^3 + 4s^4 + 4s^5 + s^6

isstable(pp0)   

ans =

     1   

The next step is to check whether for any ω  the associated Kharitonov rectangle
includes the point z = 0 . Hence we input the bounding polynomials

pmin = pol([0.45 1.95 2.95 5.95 3.95 3.95 1],6)

ppmin =
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     0.45 + 2s + 3s^2 + 6s^3 + 4s^4 + 4s^5 + s^6   

pmax = pol([0.55 2.05 3.05 6.05 4.05 4.05 1],6)   

pmax =

     0.55 + 2s + 3s^2 + 6s^3 + 4s^4 + 4s^5 + s^6   

and plot the Kharitonov rectangles for the critical range 0 1≤ ≤ω  where they make
the closest approach to z = 0 :

khplot(pmin,pmax,0:.001:1)

In spection of Fig. 4 shows that 0 ∉p j Q( , )ω . Hence, the Zero Exclusion Condition
is satisfied and we conclude that the interval polynomial is robustly stable.

The routine uses standard routines from the Polynomial Toolbox.

The macro returns error messages in the following situations:

• The input arguments are not polynomial objects

• The input matrices have inconsistent dimensions

• There is an invalid input string argument

Algorithm

Diagnostics
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Fig. 4. Kharitonov rectangles for Example 2

The routine displays warning messages if

• The input polynomials are not of a continuous-time nature, that is, their variable
is neither s nor p
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• The interval polynomial is not degree invariant

• The input frequency is nor real

kharit Kharitonov polynomials

ptopplot plot polytopic value set

See also
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kron

Kronecker tensor product of polynomial matrices

Z = kron(X,Y)

Z = kron(X,Y,tol) 

 The command

 Z = kron(X,Y)

forms the Kronecker tensor product of X and Y. The result is a large matrix formed
by taking all possible products of the elements of X and those of Y.  For instance, if
X is 2 3×  then kron(X,Y) is

    [  X(1,1)*Y   X(1,2)*Y   X(1,3)*Y

       X(2,1)*Y   X(2,2)*Y   X(2,3)*Y  ]

The command

Z = kron(X,Y,tol)

works with zeroing specified by the optional relative tolerance tol.

Define

X = [ 1+s

Purpose

Syntax

Description

Example
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      s^2  ];

Y = [ 2  3-s

      0   1  ];

Then

Z = kron(X,Y)   

returns

Z =

     2 + 2s     3 + 2s - s^2

     0          1 + s

     2s^2       3s^2 - s^3

     0          s^2   

The routine uses standard routines from the Polynomial Toolbox.

The macro displays a warning message if the input matrices have inconsistent
variables.

times array multiplication for polynomial matrix objects

mtimes matrix multiplication for polynomial matrix objects

Algorithm

Diagnostics

See also
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lcoef

Various leading coefficient matrices of a polynomial matrix

lcoef(A)

lcoef(A,'mat')

lcoef(A,'ent')

lcoef(A,'row')

lcoef(A,'col')

lcoef(A,'dia')

For a polynomial matrix A , the following leading coefficients are returned:

§ lcoef(A) and lcoef(A,'mat'): the leading (highest power) matrix
coefficient

§ lcoef(A,'ent'): the matrix of scalar leading coefficients of the individual
elements

§ lcoef(A,'row'): the matrix of row-leading coefficients

§ lcoef(A,'col'): the matrix of column-leading coefficients

If A is para-Hermitian (A' = A) then

Purpose

Syntax

Description
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§ lcoef(A,'dia') returns its diagonal leading coefficient matrix.

Any of these syntaxes may be called with two output arguments. The second
argument contains the vector or matrix of the corresponding degrees (which is the
same as the first output argument of deg).

The simple polynomial matrix

P = [ 1  s

     s^2 0 ];  

has the leading coefficient matrix and degree

[L,degP] = lcoef(P)   

L =

     0     0

     1     0

degP =

     2   

The degrees of the entries and corresponding leading coefficients are

[L,DEGP] = lcoef(P,'ent')   

L =

Examples
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     1     1

     1     0

DEGP =

     0     1

     2  -Inf   

The row degrees and the row leading coefficient matrix follow as

[L,DegP] = lcoef(P,'row')   

L =

     0     1

     1     0

DegP =

     1

     2   

The column degrees and column leading coefficient matrix are

[L,DegP] = lcoef(P,'col')   

L =
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     0     1

     1     0

DegP =

     2     1   

Finally,

[L,DegZ] = lcoef([ 1+2*s^2   3*s

                    -3*s      4 ],'dia')   

results in

L =

    -2    -3

    -3     4

DegZ =

     1

     0   

The macro deg uses standard MATLAB operations.

The macro displays an error message if

Algorithm

Diagnostics
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• an unknown option is encountered

• in case the option is 'dia': if the input matrix is not square or not para-
Hermitian

deg various degree matrices of a polynomial matrixSee also
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ldiv, rdiv

Left or right polynomial matrix division

[Q,R] = ldiv(N,D[,tol])

[Q,R] = rdiv(N,D[,tol]))

Given a square polynomial matrix D and a polynomial matrix N with the same
number of rows the command

[Q,R] = ldiv(N,D)

computes the polynomial matrix quotient Q and the polynomial matrix remainder R
such that

N DQ R= +

and the degree of R is strictly less than the degree of D. Moreover, if D is row
reduced then the degree of each row of R is strictly less than the degree of the
corresponding row of D. If D is nonsingular and row reduced then the rational
matrix D R−1  is strictly proper and the matrices Q and R are unique.

There may be no solution if D is singular. In this case all the entries of Q and R are
set equal to NaN.

A tolerance tol may be specified as an additional input argument. Its default value
is the global zeroing tolerance.

Purpose

Syntax

Description
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Given a square polynomial matrix D and a polynomial matrix N with the same
number of columns the command

[Q,R] = rdiv(N,D)

computes the polynomial matrix quotient Q and the polynomial matrix remainder R
such that

N QD R= +

and the degree of R is strictly less than the degree of D. Moreover, if D is column
reduced then the degree of each column of R is strictly less than the degree of the
corresponding column of D. If D is nonsingular and column reduced then the
rational matrix RD−1  is strictly proper and the matrices Q and R are unique.

The command

[Q,R] = ldiv(1+2*s+s^2,1+s)   

correctly returns

Q =

     1 + s

Zero polynomial matrix: 1-by-1,  degree: -Inf

R =

     0   

Examples
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If N and D are defined as

D = [    1+s     0

      -s^3-s^4  1+s ];

N = [ 0  1 ];   

then

[Q,R] = rdiv(N,D)   

returns

Q =

     1 - s + s^2     0

R =

    -1 - s^3     1   

The macro ldiv is dual to rdiv. The algorithm in rdiv is as follows. Solve the
polynomial matrix equation

R Q
I

D
N

L
NM

O
QP =

for polynomial matrices R and Q such that the column degrees of R are strictly less
than the corresponding column degrees of D. This is done with a proper column

Algorithm



ldiv, rdiv

selection scheme in the Sylvester resultant algorithm for solving (1). The linear
system resulting from the Sylvester resultant algorithm is solved with QR
factorization or SVD decomposition.

D is assumed to be column reduced. If it is not then D is reduced with colred. The
correct remainder matrix R then is recovered with xab.

This algorithm is described by Zhang and Chen (1983).

The macro issues an error message if

 the second input polynomial matrix is missing

§ invalid Not-a-Number or Inf entries are found in the input matrices

§ an invalid third input argument is encountered

 the input polynomial matrices have inconsistent dimensions

§ empty polynomial matrices are encountered

A warning message follows in case of inconsistent variables for the input matrices
or if division by zero occurs.

longldiv, longrdiv long left or right division of polynomial matrices

colred, rowred column or row reduction of a polynomial matrix

Diagnostics

See also
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ldivide (.\), rdivide (./)

Left or right array division

X = A.\B 

X = B./A 

The command

X = A.\B

denotes element-by-element division from the left. The matrices A and B must
have the same dimensions unless A is a scalar. The entries of X are the solutions
of the equations A(i, j)*X(i, j) = B(i, j) as computed with the help of the function
axb.

The command

X = B./A

denotes element-by-element division from the right. The matrices A and B must
have the same dimensions unless A is a scalar. The entries of X are the solutions
of the equations X(i, j)*A(i, j) = B(i, j) as computed with the help of the function
xab.

The functions axb and xab are called with their default tolerances.

Purpose

Syntax

Description
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Define

A = 1+s;

B = [ 2+2*s  1+3*s+2*s^2 ];   

Then

A.\B   

returns

ans =

              2          1 + 2s

On the other hand,

B./(s+2)   

returns

 Constant polynomial matrix: 1-by-1

ans =

     NaN     NaN   

This means that s + 2 does not divide A.

The routines call axb or xab.

Example

Algorithm
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The macro displays a warning message if

§ the input matrices have inconsistent variables

§ invalid Not-a-Number or Infinite entries are encountered in the input
matrices

In case of division by zero a warning follows.

axb, xab solution of linear polynomial equations

mldivide, mrdivide polynomial matrix division

Diagnostics

See also
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length, size

Length or size of a polynomial matrix

l = length(P)

mn = size(P)

[m,n] = size(P)

[m,n,deg] = size(P)

m = size(P,1)

n = size(P,2)

deg = size(P,3)

The command

l = length(P)

returns the length of polynomial matrix P. It is equivalent to max(size(P)) for a
nonempty polynomial matrix and 0 for an empty polynomial matrix.

Given a polynomial matrix P, the command

mn = size(P)

Purpose

Syntax

Description
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returns the row vector mn = [m n] containing the number of rows m and columns
n    of the matrix. The command

[m,n,deg] = size(P)

returns the numbers of rows and columns as separate output variables.

The command

[m,n,deg] = size(P)

returns the number of rows m, the number of columns n, and the degree deg of the
polynomial matrix P. The command

m = size(P,1)

returns just the number of rows,

n = size(P,2)

the number of columns, and

deg = size(P,3)

the degree.

Let

P = [ 1+s 2*s^2 3+4*s

       5    6    7    ];   

Examples
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Then

length(P)   

results in

ans =

     3   

while

[n,m,deg] = size(P)   

yields

n =

     2

m =

     3

deg =

     2   

The macros rely on standard MATLAB 5 and Polynomial Toolbox operations.Algorithm
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The macro length display an error message if it has too many input arguments,
and size protests if the second input argument is not 1, 2, or 3.

Diagnostics
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linvt, scale, shift

Linear transformation of the variable of a polynomial matrix

Scale a polynomial matrix

Shift the power of a polynomial matrix

Q = linvt(P,a,b)

Q = linvt(P,a)

Q = scale(P,a)

[Q,a] = scale(P)

Q = shift(P,n)

Linvt

If P is a polynomial matrix and a and b are real numbers then

Q = linvt(P,a,b)

computes the polynomial matrix Q such that

Q s P as b( ) ( )+

Purpose

Syntax

Description
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If the third input variable b is missing then it is set equal to 0. The command also
works for other variables than s.

Scale

Given a polynomial matrix P of degree n and a scalar a the function call

Q = scale(P,a)

results in the polynomial matrix Q given by

Q s a P s an( ) ( / )=

This leaves the leading coefficient matrix unaltered.

Without the second input argument, the call

[Q,a] = scale(P)

scales P automatically while taking the scaling factor as

 a
P

P
h

l

d

=
F
HG

I
KJ

1/

Pl  is the coefficient matrix of the term with the lowest degree, Ph  the coefficient
matrix of the term with the highest degree,  and d the difference of the highest and
lowest degrees.
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Automatic scaling makes the norms of the coefficient matrix of the term with the
lowest power equal to that of the highest power. Scaling a polynomial matrix
sometimes improves the numerical accuracy of computations that involve the
matrix.

Shift

The command

Q = shift(P,n)

computes

Q s P s sn( ) ( )=

This also works for other variables than s.

Linvt

Let

P = [ 1+s  s^2

      3*s   4  ];   

Then we may substitute s sa + 1 by the command

Q = linvt(P,1,-1)   

This yields

Examples
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Q =

     s          1 - 2s + s^2

    -3 + 3s     4   

Scale

Consider

P = -6000+1100*s-60*s^2+s^3;   

We first scale by a factor 1/10:

Q = scale(P,1/10)   

MATLAB returns

Q =

    -6 + 11s - 6s^2 + s^3   

The coefficients now all have the same order of magnitude. Automatic scaling
results in

[R,a] = scale(P)   

R =

    -1 + 3.3s - 3.3s^2 + s^3
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a =

    0.0550   

The original polynomial may of course be retrieved as

scale(R,1/a)   

ans =

    -6e+003 + 1.1e+003s - 60s^2 + s^3   

Shift

Again consider

P = [ 1+s  s^2

      3*s   4  ];

Then

Q = shift(P,2)   

yields

Q =

     s^2 + s^3     s^4

     3s^3          4s^2   
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while

shift(Q,-1)   

results in

ans =

     s + s^2     s^3

     3s^2        4s   

The macros linvt, scale and shift use standard MATLAB and Polynomial
Toolbox commands.

The macro linvt complains if the second or third input argument is not a scalar.

The macro scale shows no error or warning messages.

The macro shift displays an error message if n is not an integer, and if the
operation does not result in a polynomial matrix.

reverse reverse the variable of a matrix fraction

Algorithm

Diagnostics

See also
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llm, lrm

Least left or right multiple

L = llm(N1,N2,...,Nk[,tol])

R = lrm(N1,N2,...,Nk[,tol])

The command

L = llm(N1,N2,..., Nk)

computes a least left common multiple L of several polynomial matrices N1, N2, ...,
Nk (k > 0) that all have the same number of columns. The multiple is defined as the
least matrix divisible from the right by each of the matrices Ni. The matrices Mi
such that L = Mi*Ni may be recovered with the help of the command Mi = L/Ni,
or by Mi = xab(Ni,L),.

The command

R = lrm(N1, N2, .., Nk)

computes a least right common multiple R of several polynomial matrices N1, N2,
..., Nk (k > 0) that all have the same number of rows. The multiple is defined as the
least matrix divisible from the left by each of the Ni. The matrices Mi such that R =
Ni*Mi may be recovered with the help of the command Mi = Ni\R, or by Mi =
axb(Ni,R).

Purpose

Syntax

Description
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In both cases a tolerance tol may be specified as an additional input argument.
Its default value is the global zeroing tolerance.

A least common left multiple of

P = [ 1-s  s

       s  1+s ];

Q = [  1   s

       s   1  ];   

follows as

L = llm(P,Q)   

L =

    -0.5 + 0.5s          -0.5 - 0.5s + s^2

    -0.5 + 0.5s + s^2     0.5 + 0.5s   

Sure enough, there exist matrices

L1 = L/P, L2 = L/Q   

L1 =

    -0.5 + 0.5s    -0.5 + 0.5s

Examples



Commands — Online reference

llm, lrm

    -0.5 - 0.5s     0.5 + 0.5s

L2 =

    -0.5 + s    -0.5

    -0.5         0.5 + s   

such that

[L-L1*P L-L2*Q]   

equals

Zero polynomial matrix: 2-by-4,  degree: -Inf

ans =

     0     0     0     0

     0     0     0     0  

The macro llm is the dual of lrm. The algorithm of lrm is based on the following
idea. Suppose that we are to extract the least right multiple of a set of polynomial
matrices P s1( ) , P s2( ) ,  …, P sn( ) . Build the full row rank polynomial matrix

Algorithm
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P s

P s P s

P s P s

P s P s

P s P s
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Let

K s

K s

K s

K sn

( )

( )

( )

( )

=

L

N

MMMM

O

Q

PPPP

1

2

L

be the polynomial matrix generating the minimal polynomial basis for the right null
space of P(s), that is, such that P(s)K(s) = 0. Then R s P s K s( ) ( ) ( )= 1 1  is the least
right multiple of the polynomial matrices matrices P s1( ) , P s2( ) ,  …, P sn( ) . To see
this, first note that R is a common multiple of the P si( )  since

R s P s K s P s K s P s K sn n( ) ( ) ( ) ( ) ( ) ( ) ( )= = = =1 1 2 2 L

To prove the minimality of R consider another common multiple R  of the
polynomial matrices Pi , and denote by Ki  the polynomial matrices such that

R s P s K s P s K s P s K sn n( ) ( ) ( ) ( ) ( ) ( ) ( )= = = =1 1 2 2 L

Clearly, the polynomial matrix
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K s

K s

K s

K sn

( )

( )

( )

( )

=

L

N

MMMMM

O

Q

PPPPP

1

2

L

belongs to the polynomial right null space of P. Since K is a minimal basis for this
null space, we have K s K s q s( ) ( ) ( )=  and R s R s q s( ) ( ) ( )=  for some polynomial matrix
q. Hence, R is minimal.

Thus, the computation of a least right multiple amounts to extracting a minimal
degree null space of a suitable polynomial matrix.

The macro issues an error message under the following conditions.

§ An invalid input argument is encountered

§ Invalid Not-a-Number or Inf entries are found in the input matrices

§ The input matrices have inconsistent dimensions

gld, grd greatest divisors

Diagnostics

See also
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lmf2dss, rmf2dss

Conversion of left or right matrix fraction representation to descriptor representation

[a,b,c,d,e] = lmf2dss(N,D)

[a,b,c,d,e] = lmf2dss(N,D,tol)

[a,b,c,d,e] = rmf2dss(N,D)

[a,b,c,d,e] = rmf2dss(N,D,tol)

Consider two polynomial matrices N(s) and D(s) such that D is row reduced, which
represent the system with transfer matrix

H s D s N s( ) ( ) ( )= −1 ,

The commands

[a,b,c,d,e] = lmf2dss(N,D)

[a,b,c,d,e] = lmf2dss(N,D,tol)

return a descriptor realization

ex ax bu

y cx du

& = +
= +

Purpose

Syntax

Description
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of  the system. If D and N are left coprime then the realization is minimal.

If D and N are polynomial matrices in the indeterminate variable p then the output
arguments also define a continuous-time descriptor system.

If D and N are polynomial matrices in the indeterminate variables z, q, z^-1 or d
then the output arguments defines the discrete-time descriptor system

ex t ax t bu t

y t cx t du t

( ) ( ) ( )

( ) ( ) ( )

+ = +
= +

1

If D is column reduced then the commands

[a,b,c,d,e] = rmf2dss(N,D)

[a,b,c,d,e] = rmf2dss(N,D,tol)

return a descriptor realization of the right matrix fraction

H ND= −1

The realization is minimal if N and D are right coprime.

The optional parameter tol is a tolerance. Its default value is the global zeroing
tolerance.

Consider the SISO system with nonproper transfer function

H s
s s

s
( ) =

+ +
+

1 2
2

2

Examples
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The commands

N = 1+2*s+s^2; D = 2+s;

[a,b,c,d,e] = lmf2dss(N,D)   

return the descriptor realization

a =

    -2     0     0

     0     1     0

     0     0     1

b =

     1

     0

     1

c =

     1    -1     0

d =

     0
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e =

     1     0     0

     0     0     1

     0     0     0   

The commands

symbol(N,'z^-1'); N

symbol(D,'z^-1'); D

[a,b,c,d,e] = lmf2dss(N,D)   

result in

N =

     1 + 2z^-1 + z^-2

D =

     2 + z^-1

a =

   -0.5000    1.0000

         0         0



Commands — Online reference

lmf2dss, rmf2dss

b =

    1.5000

    1.0000

c =

    0.5000         0

d =

    0.5000

e =

     1     0

     0     1   

For the conversion of the left fraction H D N= −1  to state space form first lmf2ss is
called to convert the fraction to generalized state space form which then is
converted to descriptor form with the help of ss2dss. If N and D are polynomial
matrices in z^-1 or d then in lmf2ss the fraction is first converted to a fraction of
polynomial matrices in z with the help of the macro reverse.

The macro rmf2ss works similarly.

The macros lmf2dss and rmf2dss issue error messages if

§ An invalid value for the tolerance is encountered

Algorithm

Diagnostics
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§ The number of input arguments is incorrect

§ The input matrices are not polynomial matrices

§ The input matrices have inconsistent variables

§ The input matrices have incompatible sizes

dss2lmf, dss2rmf conversion from descriptor representation to a left or
right polynomial matrix fraction representation

dss create a descriptor state space object or convert to a
descriptor state space object

lmf2ss, rmf2ss
ss2lmf, ss2rmf

conversion of a left or right matrix fraction to state
space representation and vice-versa

See also
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lmf2rat, rmf2rat, lmf2tf, rmf2tf

lmf2rat, rmf2rat, lmf2tf, rmf2tf

Conversion from left or right matrix fraction to rational or transfer function format

[num,den] = lmf2rat(N,D[,tol])

[num,den] = rmf2rat(N,D[,tol])

[num,den] = lmf2tf(N,D[,tol])

[num,den] = rmf2tf(N,D[,tol])

Given two polynomial matrices N and D, where D is square and has the same
number of rows as N, the function

 [num,den] = lmf2rat(N,D)

returns the transfer function

H D N= −1

in “rational” format. The polynomial matrices num and den have the same sizes.
The (i, j)th entry of num contains the numerator of the corresponding entry Hij  of
the transfer matrix H, and the corresponding entry of den contains its denominator.

The command

 [num,den] = lmf2tf(N,D)

Purpose

Syntax

Description
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lmf2rat, rmf2rat, lmf2tf, rmf2tf

returns the transfer function H in Control System Toolbox format. Both num and
den are cell arrays of the same size as the transfer matrix H. The (i, j)th cell of num
contains the numerator polynomial of the transfer function and the corresponding
cell of den the denominator polynomial. The polynomials are in MATLAB format. In
the SISO case num and den are polynomials in MATLAB format. Note that the
polynomials contained in num and den should be taken as polynomials in the
variables of N and D.

Similarly, if N and D are two polynomial matrices such that D is square and has the
same number of columns as N then the functions

 [num,den] = rmf2rat(N,D)

 [num,den] = rmf2tf(N,D)

return the transfer function

H ND= −1

in rational and in Control System Toolbox format, respectively.

In all cases a tolerance tol may be specified as an additional input argument. Its
default value is the global zeroing tolerance.

Transfer function models are not recommended. State space and matrix fraction
models are more natural and the conversion from and to transfer function models is
numerically delicate.
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Consider the 2 1×  transfer function defined by the left matrix fractionH D N= −1 ,
with

D = [ 2+s  0

       1   1 ];

N = [  1

       1  ];   

The transfer matrix follows in rational form by typing

[num,den] = lmf2rat(N,D)   

MATLAB returns

num =

     1

     1 + s

den =

     2 + s

     2 + s   

Inspection shows that

Examples
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lmf2rat, rmf2rat, lmf2tf, rmf2tf

H s D s N s s
s
s

( ) ( ) ( )= = +
+
+

L

N

MMM

O

Q

PPP
−1

1
2
1
2

To convert the right fraction H ND= −1  first the matrix D is inverted by computing its
adjoint and determinant (see adj). After multiplying N on the right by the adjoint of
D each of the rational entries of H is simplified by first using grd to compute the
greatest common divisor of the numerator and denominator and then canceling the
divisor using xab.

The macros lmf2rat and lmf2tf are the duals of rmf2rat and rmf2tf.

The macros return error messages if

§ an invalid tolerance in encountered

§ the number of input arguments is incorrect

§ invalid NaN or Inf entries are found in the input polynomial matrices

§ the input matrices have incompatible sizes

§ the input matrices are not of the proper type

§ the input matrices have different variable strings

§ the factorization fails (that is, a common divisor cannot be canceled)

In the latter case it is recommended to modify the tolerance.

Algorithm

Diagnostics
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rat2lmf, rat2rmf,
tf2lmf, tf2rmf

conversion from rational or Control System Toolbox
transfer function format to a left or right polynomial
matrix fraction

tf create a Control System Toolbox LTI object in transfer
function format

See also
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lmf2rmf, rmf2lmf

Polynomial matrix fraction conversions

[P,Q] = lmf2rmf(N,D)

[P,Q] = lmf2rmf(N,D,tol)

[P,Q] = rmf2lmf(N,D)

[P,Q] = rmf2lmf(N,D,tol)

Given a nonsingular square polynomial matrix D and a polynomial matrix N with the
same numbers of rows, the command

[P,Q] = lmf2rmf(N,D)

computes a nonsingular square polynomial matrix Q and a polynomial matrix P
such that

D N PQ− −=1 1

with P and Q right coprime. Hence, the routine converts a left polynomial matrix
fraction into a coprime right one. If D N−1  is proper then Q is column reduced.

Similarly, given a nonsingular square polynomial matrix D and a polynomial matrix
N with the same numbers of columns, the command

Purpose

Syntax

Description
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[P,Q] = rmf2lmf(N,D)

computes a nonsingular square polynomial matrix Q and a polynomial matrix P
such that

ND Q P− −=1 1

with P and Q left coprime. Hence, the routine converts a right polynomial matrix
fraction into a coprime left one. If ND−1  is proper then Q is row reduced.

For both routines a tolerance tol may be specified as an additional input
argument. Its default value is the global zering tolerance.

To transform the left polynomial matrix fraction D N−1 , with

D = 1+2*s+s^2;

N = [1+s  3+4*s^2];   

into a coprime right fraction, just type

[P,Q] = lmf2rmf(N,D)   

MATLAB responds with

P =

     1    -4 + 4s

Examples
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Q =

     1 + s    -7

     0    1 + s   

As another application consider the conversion of  the rational matrix

R s s
s
s

( ) = +
+
+

L

N

MMM

O

Q

PPP

1
2
1
2

to a coprime left matrix fraction. Inspection shows that

R s
s

s s
( ) =

+
+

L
NM

O
QP +

L
NM

O
QP

−2 0

0 2

1

1

1

but this fraction is not coprime. We therefore write

R s N s D s( ) ( ) ( )= −1

with

N = [  1

      1+s  ];

D = 2+s;   
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and apply

[P,Q] = rmf2lmf(N,D)   

This results in the left coprime fraction R Q P= −1  with

 Constant polynomial matrix: 2-by-1

P =

     1

     1

Q =

     2 + s     0

     1         1   

The macro lmf2rmf uses the routine null to compute [P; Q] so that its columns
form a basis for the right null space of [D –N]. The macro rmf2lmf is the dual of
lmf2rmf.

The macros lmf2rmf and rmf2lmf issue error messages if

§ The second input argument is missing

§ One or both of the input matrices are empty

§ The input matrices have inconsistent dimensions

Algorithm

Diagnostics
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lmf2rmf, rmf2lmf

null null space of a polynomial matrix

minbasis minimal polynomial basis

See also
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lmf2ss, rmf2ss

Conversion of left or right matrix fraction representation to state space
representation

[a,b,c,d] = lmf2ss(N,D)

[a,b,c,d] = lmf2ss(N,D,tol)

[a,b,c,d] = rmf2ss(N,D)

[a,b,c,d] = rmf2ss(N,D,tol)

Given two polynomial matrices N(s) and D(s) such that D is nonsingular and row
reduced the commands

[a,b,c,d] = lmf2ss(N,D)

[a,b,c,d] = lmf2ss(N,D,tol)

return the (generalized) observer-form realization

&

( )

x ax bu

y cx d s u

= +
= +

with s the differentiation operator, of  the system with transfer matrix

H s D s N s( ) ( ) ( )= −1

Purpose

Syntax

Description
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If D and N are polynomial matrices in the indeterminate variable p then the output
arguments also define a continuous-time state space system, and d is returned as
a polynomial matrix in p.

If D and N are polynomial matrices in the indeterminate variables z, q, z^-1 or d
then the output arguments define the discrete-time system

x t ax t bu t

y t cx t d z u t

( ) ( ) ( )

( ) ( ) ( ) ( )

+ = +
= +

1

where z is the time shift operator given by zu(t) = z(t+1). The polynomial matrix d is
returned as a polynomial matrix in z if N and D are polynomial matrices in z or z^-
1, and as a polynomial matrix in q if N and D are polynomial matrices in q or d.

If d is a constant matrix then it is always returned in MATLAB format.

If D is nonsingular and column reduced then the commands

[a,b,c,d] = rmf2ss(N,D)

[a,b,c,d] = rmf2ss(N,D,tol)

return a (generalized) controller-form realization of the right matrix fraction

H ND= −1

The optional parameter tol is a tolerance that is used in testing whether D is row
or column reduced. Its default value is the global zeroing tolerance.
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Consider the SISO system with nonproper transfer function

H s
s s

s
( ) =

+ +
+

1 2
2

2

The commands

N = 1+2*s+s^2; D = 2+s;

[a,b,c,d] = lmf2ss(N,D)   

return the state space realization

a =

    -2

b =

     1

c =

     1

d =

     s   

Example
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The commands

N.v = 'z^-1', D.v = 'z^-1'

[a,b,c,d] = lmf2ss(N,D)   

result in

N =

     1 + 2z^-1 + z^-2

D =

     2 + z^-1

a =

   -0.5000    1.0000

         0         0

b =

    1.5000

    1.0000

c =

    0.5000         0
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d =

    0.5000   

The macro lmf2ss is the dual of rmf2ss.

For the conversion of the right fraction H ND= −1  to state space form first the
strictly proper and polynomial parts of H are separated by polynomial division as

H s N s D s d so( ) ( ) ( ) ( )= +−1

The controller-form realization of the strictly proper part H s N s D so( ) ( ) ( )= −1  is
constructed as described in Kailath (1980). The column degrees of the column
reduced polynomial matrix D are the controllability indices of the system.

If N and D are polynomial matrices in the indeterminate variable z^-1 or d then the
fraction is first converted to a fraction in z using the routine reverse.

The macros lmf2ss and rmf2ss issue error messages under the following
conditions.

§ The second input argument is missing

§ An invalid NaN or Inf entry is encountered in the input polynomial matrices

§ The input matrices have inconsistent dimensions

§ The third input argument is not a scalar

§ Inconsistent variables are encountered in the input

Algorithm

Diagnostics
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§ The second input matrix is singular

§ The second input matrix is not column or row reduced as required

ss2lmf, ss2rmf conversion from state space representation to a
left or right polynomial matrix fraction
representation

lmf2dss, rmf2dss,
dss2lmf, dss2rmf

conversion of a left or right matrix fraction to
descriptor representation and vice-versa

reverse reverse the variable of a polynomial matrix
fraction

See also
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lmf2zpk, rmf2zpk

Conversion of a left or right matrix fraction to zero-pole-gain (ZPK) format

[Z,P,K] = lmf2zpk(N,D[,tol])

[Z,P,K] = rmf2zpk(N,D[,tol])

Given two polynomial matrices N and D, where D is square and has the same
number of rows as N, the function

[Z,P,K] = lmf2zpk(N,D)

returns the transfer function

H D N= −1

in zero-pole-gain format. In this format, each entry

H s k

s z

s p
ij

j
j

j
j

( )

( )

( )
=

−

−

∏
∏

of the transfer matrix is characterized by its zeros z jj, , ,= 1 2 L  ,  its poles
p jj, , ,= 1 2 L , and its gain k.

Purpose

Syntax

Description
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Z and P are cell arrays and K is a two-dimensional array. Each cell of Z contains
the zeros of the corresponding transfer function, each cell of contains P the poles,
and each entry of K contains the gain. Note that the polynomials whose roots and
gains are represented are polynomials in the variables of N and D (that is, s or p in
the continuous-=time case, and z, q, d or z−1 in the discrete-time case).

Similarly, if N and D are two polynomial matrices such that D is square and has the
same number of columns as N then the function

[Z,P,K] = rmf2zpk(N,D)

returns the transfer function

H ND= −1

in zero-pole-gain format.

In both cases a tolerance tol may be specified as an additional input argument.
Its default value is the global zeroing tolerance.

Consider the system with transfer matrix H D N= −1 , where

D = [ 2+s  0

       1   1 ];

N = [  1

           1 ];   

Examples
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The command

[Z,P,K] = lmf2zpk(N,D)

yields the ZPK data

Z =

           []

    [-1.0000]

P =

    [-2]

    [-2]

K =

    1.0000

    1.0000   

Inspection shows that the transfer matrix of the system is

H s
s

s
s

( ) =
+

+
+

L

N

MMMMM

O

Q

PPPPP

1
2

1
2
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If N and D are redefined as matrices in z−1 rather than s then the same ZPK data
are returned, but the transfer matrix is to be interpreted as

H z
z

z

z

( )−
−

−

−

=
+

+

+

L

N

MMMMM

O

Q

PPPPP
1

1

1

1

1

2

1

2

Using the routine lmf2tf the fraction H D N= −1  is converted to transfer function
form. The numerators and denominators of the entries of H are converted to ZPK
format with the help of pol2root.

The macro rmf2zpk is the dual of lmf2zpk.

The macros lmf2zpk and rmfzpk return error messages if there is no second
input argument.

zpk2lmf
zpk2rmf

conversion from transfer function format to a left or right
polynomial matrix fraction

zpk create a Control System Toolbox LTI object in ZPK format

Algorithm

Diagnostics

See also
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longldiv, longrdiv

Long left or right polynomial matrix division

[Q,R] = longldiv(N,D,d[,tol])

Q = longldiv(N,D,d[,tol])

[Q,R] = longrdiv(N,D,d[,tol])

Q = longrdiv(N,D,d[,tol])

Let D be a square polynomial matrix and N a polynomial matrix with the same
numbers of rows. Then if both D and N are polynomial matrices in the “discrete-
time” variable z, the command

[Q,R] = longldiv(N,D,d)

returns the polynomial matrices Q(z) and R z( )−1  (the latter of degree d) that
together define the first n + d + 1 terms of the Laurent series expansion

D z N z Q z Q z Q z R R z R z R zn
n

n
n

d
−

−
− − − −= + + + + + + + + +1

1
1

1 0 1
1

2
2 1( ) ( ) L L L

of the left fraction D N−1  about the point z = ∞ . The coefficient matrices Qn , Qn−1 ,
L , Q1 , R0 , R1, L , constitute the impulse response of the discrete-time system
defined by the polynomial matrix fraction. If the fraction is nonproper then n > 0 and
the system is non-causal.

Purpose

Syntax

Description
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Also if N and D are polynomial matrices in q, d or z−1 the correct series expansion
is returned, with q being taken as synonymous with z and d to z−1.

If N and D are polynomial matrices in the “continuous-time” variable s (or p, which
is taken to be synonymous with s) then the command

[Q,R] = longldiv(N,D,d)

returns the first n + d + 1 terms of the Laurent series expansion

D s N s Q s Q s Q s R R s R s R sn
n

n
n

d
d−

−
− − − −= + + + + + + + + +1

1
1

1 0 1
1

2
2( ) ( ) L L L

of D N−1  about the point s = ∞ . Q is a polynomial matrix in s and R is a three-
dimensional array R such that

R R k k dk = + =(:,:, ), , , , ,1 0 1 2 L

The coefficients Rk , k = 1, 2, L , are the Markov parameters of the system.

The command

Q = longldiv(N,D,d)

returns just the polynomial part of D N−1 , including the zero-degree term, that is,

Q v R Q v Q v Q vn
n( ) = + + + +0 1 2

2 L

The command

[Q,R] = longrdiv(N,D,d)
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expands the right fraction ND−1 , provided N and D have the same number of
columns.

Both for longldiv and longrdiv an optional tolerance tol may be specified as
an additional input argument. Its default value is the global zeroing tolerance.

Let

N = 1; D = z-0.5;

Then

[Q,R] = longldiv(N,D,5)

returns

Zero polynomial matrix: 1-by-1,  degree: -Inf

Q =

     0

R =

     z^-1 + 1/2*z^-2 + 1/4*z^-3 + 1/8*z^-4 + 1/16*z^-5

In the format

gprop symbr, R

we see that

Examples
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R =

     z^-1 + 1/2*z^-2 + 1/4*z^-3 + 1/8*z^-4 + 1/16*z^-5

As another example consider

N = 1+z;

D = 1+z +2*z^2;

We then may compute and plot the impulse response of this system according to

d = 20; [P,Q] = longldiv(N,D,d);

t =0:d; ir = Q{:};

plot(t,ir,t,ir,'ro')

The result is shown in Fig. 5.

As a continuous-time example consider the left fraction defined by

D = 1+s;

N= [1+s+s^2 1];   

[Q,R] = longldiv(N,D,6);



Commands — Online reference

longldiv, longrdiv
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Fig. 5. Impulse response

The nonproper part of D N−1  is

Q  

Q =

     s     0
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while the first 6  Markov parameters R R kk = (:,:, ) , k = 1, 2, L , 6, follow from

R   

R(:,:,1) =

     0     0

R(:,:,2) =

     1     1

R(:,:,3) =

    -1    -1

R(:,:,4) =

     1     1

R(:,:,5) =

    -1    -1

R(:,:,6) =

     1     1

R(:,:,7) =

    -1    -1
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1. If N and D are polynomial in the variables d or z−1 then the fraction is first
converted to a fraction in z using reverse.

2. If D is not row-reduced in the case of longldiv or not column reduced in the
case of longrdiv then it is first reduced.

3. The polynomial part Q is computed using ldiv or rdiv.

4. After multiplying the remainder of this division by zd  or sd  as the case may be
the desired series expansion is found by dividing by D, again using ldiv or
rdiv.

The macro issues an error message under the following conditions:

§ There are not enough input arguments

§ The third input is not a nonnegative integer

§ The denominator matrix is not square

§ The input polynomial matrices have inconsistent dimensions

A warning follows if

§ the denominator is singular to working precision

§ the input matrices have inconsistent variables

Algorithm

Diagnostics
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ldiv, rdiv left and right polynomial matrix divisionSee also
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lti2lmf, lti2rmf

Conversion of an LTI object to a left or right matrix fraction representation

[N,D] = lti2lmf(sys[,tol])

[N,D] = lti2rmf(sys[,tol])

The command

[N,D] = lti2lmf(sys)

converts the LTI object sys in Control System Toolbox format to the left polynomial
matrix fraction format

H D N= −1

The LTI object may be a state space model, a descriptor state space model, a
transfer function model, or a zero-pole-gain model.

If the object is a continuous-time system then D and N are returned as matrices in
the variable s. If is is a discrete-time system then D and N are returned as matrices
in the variable z.

The command

[N,D] = lti2lmf(sys)

Purpose

Syntax

Description
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returns the right fraction

H ND= −1

In both cases a tolerance tol may be specified as an additional input argument.

The functions lti2lmf and lti2rmf only work if the Control System Toolbox is
included in the MATLAB path.

Later versions of the Polynomial Toolbox will support a polynomial matrix fraction
LTI object.

The Control System Toolbox command

sys = ss(1,2,3,4)   

creates the LTI system in state space form

a =

                        x1

           x1            1

b =

                        u1

           x1            2

c =

Examples
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                        x1

           y1            3

 d =

                        u1

           y1            4

Continuous-time system.   

From this we obtain

[N,D] = lti2lmf(sys)   

N =

     0.67 + 1.3s

D =

    -0.33 + 0.33s   

The Control System Toolbox LTI object in transfer function form

sys = tf([1 2],[3 4],1)   

Transfer function:

 z + 2
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-------

3 z + 4

Sampling time: 1   

is correctly converted by typing

[N,D] = lti2lmf(sys)   

N =

     1.5 + 0.75z

D =

     3 + 2.3z   

Depending on the type of LTI object the system is transformed into polynomial
matrix fraction form by one of the convertors ss2lmf, ss2rmf, tf2lmf, tf2rmf,
zpk2lmf or zpk2rmf.

The macros return error messages if if the first input argument is not an LTI object
or an incorrect value of the tolerance is encountered.

ss, tf, zpk create a Control System Toolbox LTI object in ss, tf or zpk
format

Algorithm

Diagnostics

See also
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lu

LU factorization for polynomial matrices

[L,U] = lu(A[,tol])

[L,U,P] = lu(A[,tol])

Given a square polynomial matrix A with nonsingular constant term the command

[L,U] = lu(A)

computes an upper triangular polynomial matrix U whose diagonal entries have
nonzero real parts and a a unimodular matrix L such that

A = LU

L(0) is “psychologically lower triangular,” that is, it is a product of lower triangular
and permutation matrices.

The command

[L,U,P] = lu(A)

returns a unimodular matrix L with lower triangular L(0), an upper triangular matrix
U and a permutation matrix P so that PA = LU.

A tolerance tol may be specified as an additional input argument. Its default value
is the global zeroing tolerance.

Purpose

Syntax

Description
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Consider

P =  [ 1+s  s^2

        s    5    ];   

The command

[L,U] = lu(P)   

returns

L =

     1 + s    -s

     s         1 - s

U =

     1     5s + s^2 - s^3

     0     5 + 5s - s^3    

The macro first calls tri to transform P unimodularly to upper triangular form.
Next, standard LU decomposition is applied to the constant term.

The macro issues error messages under the following conditions:

• Invalid Not-a-Number or Inf entries are encountered in the input matrix

Examples

Algorithm

Diagnostics
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• The input matrix is not square

• The constant term of the input matrix is singular

• The reduction to triangular form fails

tri transformation of a polynomial matrix to triangular formSee also
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mat2pol

Conversion of a polynomial or polynomial matrix in MATLAB or Control System
Toolbox format to Polynomial Toolbox format

P = mat2pol(M)

The command

P = mat2pol(M)

converts the polynomial or polynomial matrix M in MATLAB or Control System
Toolbox format to Polynomial Toolbox format.

In MATLAB format a polynomial is represented as a row vector whose  entries are
the coefficients of the polynomial according to descending powers. In Control
System Toolbox format a polynomial matrix is a cell array of the same dimensions
as the polynomial matrix, with each cell a row vector representing the
corresponding entry of the polynomial matrix in MATLAB format. If the polynomial
matrix consists of a single  element then in Control System Toolbox format it is
represented as a row vector with entries in MATLAB format.

To comply with an older standard in the Control System Toolbox, polynomial
matrices consisting of a single column may be represented as a matrix whose rows
are the polynomial entries in MATLAB format. The macro mat2pol automatically
converts this older format to a polynomial matrix object.

Purpose

Syntax

Description
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Conversion of a polynomial in MATLAB format to Polynomial Toolbox format:

P = mat2pol([1 2 3])  

P =

     3 + 2s + s^2  

Conversion of a polynomial matrix in Control System Toolbox format. We first
display a matrix in Control System Toolbox  format

M   

M =

    [1x3 double]    [1x3 double]   

Its entries are

M{1,1}, M{1,2}  

ans =

     1     2     0

ans =

     3     0     4   

Next we convert to Polynomial Toolbox format:

Examples
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P = mat2pol(M)  

P =

     2s + s^2     4 + 3s^2

Finally,

M = [ 1 2

      3 4 ];   

is also a polynomial matrix in the older Control System Toolbox format. In
Polynomial Toobox format we can view it more easily:

mat2pol(M)   

ans =

     2 + s

     4 + 3s   

The macro mat2pol uses standard MATLAB 5 operations.

The macro mat2pol displays an error message if the input is not a polynomial in
MATLAB format or a polynomial matrix in Control System Toolbox format.

pol2mat conversion from Polynomial Toolbox format to MATLAB or Control
System Toolbox format

Algorithm

Diagnostics

See also
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pol2dsp conversion from Polynomial Toolbox format to DSP format

dsp2pol conversion from DSP format to Polynomial Toolbox format
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minbasis

Minimal polynomial basis

[B,rk] = minbasis(A[,tol])

The command

 [B,rk]  =  minbasis(A)

computes a minimal polynomial basis B for the submodule spanned by the
columns of the polynomial matrix A. The basis is minimal in the sense of Forney,
that is, B is column reduced and has full column rank rk. Morever, the columns of
B are arranged according to decreasing degrees. If C is another polynomial basis
then necessarily deg(C,'col') ≥  deg(B,'col').

A tolerance tol may be specified as an additional input argument. Its default value
is the global zeroing tolerance.

Consider

A = [ 1+s     s^2     1+s^3   4

       2   3+4*s+s^2    5     6 ];   

The command

[B,rk] = minbasis(A)   

Purpose

Syntax

Description

Examples
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yields

 Constant polynomial matrix: 2-by-2

B =

     1     4

     5     6

rk =

     2   

On the other hand,

minbasis([  1   s  s^2

           s^2  s   1  ])   

returns

ans =

     s^2     1

     1       1   
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The algorithm to compute the minimal basis involves the following steps.

1. Given the polynomial matrix A, extract a greatest common right divisor D using
the macro grd.

2. Compute the polynomial matrix L such that A = LD using the macro xab.

3. Reduce L to column-reduced form B using the macro colred.

A detailed description of what a minimal basis for a polynomial submodule is
provided in Forney  (1975).

The macro issues error messages under the following conditions:

• Invalid Not-a-Number or Inf entries are encountered in the input matrix

• An invalid second input argument is found

colred column reduction of a polynomial matrix

null null space of a polynomial matrix

Algorithm

Diagnostics

See also
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minus, plus, uminus, uplus

minus, plus, uminus, uplus

Subtraction, addition, unary minus and unary plus of polynomial matrices

C = A - B

C = minus(A,B[,tol])

C = A + B

C = plus(A,B[,tol])  

B = -A

B = uminus(A)

B = +A

B = uplus(A)

The commands

C = A - B

C = minus(A,B)

subtract the polynomial matrix B from A  with zeroing using the global zeroing
tolerance. The command

Purpose

Syntax

Description
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minus, plus, uminus, uplus

 C = minus(A,B,tol)

works with zeroing specified by the relative tolerance tol.

The commands

C = A + B

C = plus(A,B[,tol])

work similarly but return the sum of the polynomial matrices A and B.

The function of the commands

B = -A

B = uminus(A)

B = +A

B = uplus(A)

is obvious.

The commands

A = 1+s/3;

B = 1+0.333333*s;

C = A-B   

Example
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minus, plus, uminus, uplus

result in

C =

     3.3e-007s   

but

minus(A,B,1e-4)   

returns

Zero polynomial matrix: 1-by-1,  degree: -Inf

ans =

     0   

The routines use standard MATLAB 5 operations.

The macros minus and plus display an error message if

§ they do not have enough input arguments

§ the dimensions of the polynomial matrices do not agree

If the input matrices have inconsistent variables then a warning follows.

times, mtimes polynomial multiplication

Algorithm

Diagnostics

See also



Commands — Online reference

mixeds

mixeds

Solution of a SISO mixed sensitivity problem

[y,x,gopt] = mixeds(n,m,d,a1,b1,a2,b2,gmin,gmax,accuracy)

[y,x,gopt] = mixeds(n,m,d,a1,b1,a2,b2,gmin,gmax,accuracy,tol)

[y,x,gopt] =

mixeds(n,m,d,a1,b1,a2,b2,gmin,gmax,accuracy,’show’)

[y,x,gopt] = ...

   mixeds(n,m,d,a1,b1,a2,b2,gmin,gmax,accuracy,tol,’show’)

The command

[y,x,gopt] = ...

   mixeds(n,m,d,a1,b1,a2,b2,gmin,gmax,accuracy,tol,’show’)

computes a compensator C = y/x that solves the mixed sensitivity problem for the
SISO plant P = n/d with weighting functions V = m/d, W1 = a1 b1/  and
W2 = a2 b2/ .

The mixed sensitivity problem consists of minimizing

Purpose

Syntax

Description
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sup ( ) | ( ) ( )| | ( ) ( )|
ω

ω ω ω ω ω
∈

+
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V j W j S j W j U j2
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where

S
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U
C
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=
+

=
+

1
1 1

,

are the sensitivity and input sensitivity functions of the closed-loop system,
respectively.

The input parameters n, d, m, a1, b1, a2 and b2 are scalar polynomials or
constants. The polynomial m needs to have the same degree as d. The
polynomials m, b1 and b2 need to be strictly Hurwitz.

The input parameters gmin and gmax are lower and upper bounds for the minimal
value of the mixed sensitivity criterion, respectively. The parameter accuracy
specifies how closely the minimal norm is to be approached.

The optional input parameter tol = [tolcncl tolstable tolspf tollr]
defines four tolerances.

1. The tolerance tolcncl is used in canceling identical pole-zero pairs in the
transfer function C = y/x of the optimal compensator. Its default value is 1e-4.

2. The tolerance tolstable is used in the various stability tests. It has the
default value 1e-8.
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3. The tolerance tolspf is used in the spectral factorization, and has the default
value 1e-8.

4. The tolerance tollr is used in the left-to-right and right-to-left conversions. Its
default value is 1e-8.

If the optional input argument 'show' is present then the successive test values
gamma of the minimal value of the criterion during the binary search are shown,
and any pole-zero pair that is canceled in y/x is reported.

The output parameter gopt is the computed minimal value of the criterion.

Consider the mixed sensitivity problem for the plant with transfer function

P s
n s
d s s

( )
( )
( )

= =
1
2

defined by

V s
m s
d s

s s

s
W s

a s
b s

W s
a s
b s
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, ( )
( )
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1 2

1 1
2

2 1
1

1
2

2

2

We let c = 0.1, r = 0.1. First define the input parameters:

c = 0.1; r = 0.1; n = 1; d = s^2; m = s^2+s*sqrt(2)+1;

a1 = 1; b1 = 1; a2 = c*(1+r*s); b2 = 1;

gmin = 1; gmax = 10; accuracy = 1e-4;   

Example
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Next we call the routine mixeds:

[y,x,gopt] = ...

    mixeds(n,m,d,a1,b1,a2,b2,gmin,gmax,accuracy,'show')   

This is the response of MATLAB:

gamma test result

----- -----------

10 stable

1 no solution

5.5 stable

3.25 stable

2.125 stable

1.5625 stable

1.28125 unstable

1.42188 stable

1.35156 unstable

1.38672 stable



Commands — Online reference

mixeds

1.36914 unstable

1.37793 unstable

1.38232 unstable

1.38452 stable

1.38342 stable

1.38287 unstable

1.38315 unstable

1.38329 unstable

1.38335 stable

Cancel root at -0.999535

y =

     57 + 96s

x =

     79 + 16s + s^2

gopt =

    1.3834   
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The minimal value of the criterion is 1.3834 and the optimal compensator has the
transfer function

C s
y s
x s

s

s s
( )

( )
( )

= =
+

+ +

57 96

79 16 2

It is easy to compute the closed-loop poles of the optimal system:

clpoles = roots(d*x+n*y)   

clpoles =

  -7.3282 + 1.8769i

  -7.3282 - 1.8769i

  -0.7071 + 0.7071i

  -0.7071 - 0.7071i   

The algorithm is described in Kwakernaak (1996). Given an upper bound γ for the
criterion a suboptimal compensator is found by a polynomial matrix spectral
factorization followed by a left-to-right conversion of a polynomial matrix fraction,
and another polynomial matrix spectral factorization. By testing whether a
stabilizing suboptimal solution exists the optimal solution is approached by a binary
search on γ .

Algorithm
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Numerical degeneracy near the optimal solution is avoided by using a modified
form of the spectral factorization. The optimal compensator often has a coinciding
or nearly coinciding pole-zero pair. If detected such a pair is cancelled.

The macro mixeds displays error messages in the following situations:

• Unknown option

• Erroneous tolerance parameter

• The polynomials d and m have different degrees

• The polynomials m, b1 or b2 are not Hurwitz

• The lower bound gmin exceeds the upper bound gmax

• No solution exists at the upper bound gmax. In this case gmax should be
increased

• No stabilizing solution exists at the upper bound gmax. In this case gmax
should also be increased

• A stabilizing solution exists at the lower bound gmin. In this case gmin should
be decreased

If the option ’show’ is present then the successive values of the upper bound of
the norm during the binary search are shown, and any pole-zero pair that is
cancelled in the optimal compensator C = y/x is reported.

Diagnostics
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dsshinf H∞  suboptimal compensator for descriptor systems

dssrch search for H-infinity optimal compensator for descriptor
systems

plqg, splqg LQG optimal compensator

spf polynomial spectral factorization

lmf2rmf, rmf2lmf Left-to-right and right-to-left matrix fraction conversion

See also
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mldivide (\), mrdivide (/)

mldivide (\), mrdivide (/)

Backslash or left polynomial matrix division

Slash or right polynomial matrix division

X = A\B

X = mldivide(A,B)

X = B/A

X = mrdivide(A,B)

The commands

X = A\B

X = mldivide(A,B)

are equivalent to

X = axb(A,B)

They determine a polynomial matrix X such that AX  = B.

The commands

X = B/A

Purpose

Syntax

Description
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X = mrdivide(A,B)

are the same as

X = xab(A,B)

They determine a polynomial matrix X such that XA  = B.

Define

A = [ 1+s  1

       0   1 ];

B = [ 2+2*s

       1+s  ];   

Then

X = A\B   

yields

X =

     1

     1 + s   

while

Example
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mldivide (\), mrdivide (/)

Y = B/s   

results in

Constant polynomial matrix: 2-by-1

Y =

     NaN

     NaN   

This means that s does not divide B on the right.

See the description of axb for the algorithm.

The macros display an error message if invalid Not-a-Number or Infinite
entries are encountered in the input matrices. A warning message is issued in case
of division by zero.

axb, xab solution of linear polynomial matrix equations

ldivide, rdivide left or right array division

Algorithm

Diagnostics

See also
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mono

Create a power of the current global variable string

P = mono(n)

The command

P = mono(n)

creates the nth power of the current global variable string. If the current global
variable string is s then P is returned as sn .

If n is a vector or matrix then the vector or matrix of monomials is returned.

Typing

P = mono([0 1 2])   

returns

P =

     1     s     s^2   

More complex polynomials can be created for instance as

P = sum(mono(0:5))   

Purpose

Syntax

Description

Examples
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which yields

P =

     1 + s + s^2 + s^3 + s^4 + s^5   

Other examples are

P = (1:5)*mono(0:4)'   

P =

     1 - 2s + 3s^2 - 4s^3 + 5s^4   

and

P = (1:5)'*mono(0:4)   

P =

     1     s      s^2      s^3      s^4

     2     2s     2s^2     2s^3     2s^4

     3     3s     3s^2     3s^3     3s^4

     4     4s     4s^2     4s^3     4s^4

     5     5s     5s^2     5s^3     5s^4   
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The macro uses standard MATLAB 5 commands.

The macro returns an error message under the following conditions:

§ There are not enough input arguments

§ The input argument is not a MATLAB matrix

§ A negative or nonintegral degree is encountered

d, s, p, q, v, z, zi create simple basic polynomials

Algorithm

Diagnostics

See also
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mpower (^), power (.^)

mpower (^), power (.^)

Matrix power of a polynomial matrix

Element-wise power of a polynomial matrix

X = A^n

X = mpower(A,n[,tol])

X = A.^n

X = power(A,n[,tol])

The commands

An = A^n

An = mpower(A,n)

return A to the power n if n is a scalar nonnegative integer and A is square. This
works with zeroing activated through the global zeroing variable. The command

An = mpower(A,n,tol)

works with zeroing specified by the input tolerance tol.

The commands

Purpose

Syntax

Description



Commands — Online reference

mpower (^), power (.^)

Z = X.^Y

Z = power(X,Y)

denote element-by-element powers. X and Y must have the same dimensions
unless one is a scalar.

Let

X = [ 1+s 1

       0  1 ];   

Then

X^2   

returns

ans =

     1 + 2s + s^2     2 + s

     0                1    

On the other hand,

X.^[0 1;1 1]   

returns

Examples
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mpower (^), power (.^)

 Constant polynomial matrix: 2-by-2

ans =

     1     1

     0     1    

while

(s+2).^[1 2 3]   

 ans =

     2 + s     4 + 4s + s^2     8 + 12s + 6s^2 + s^3    

The macros employ basic MATLAB 5 operations.

The macro mpower returns error messages if

§ the input matrix is not square

§ non-integral or negative powers are encountered

The macro power reports an error if

§ the matrix dimensions do not agree

§ non-integral or negative powers are encountered

Algorithm

Diagnostics



Commands — Online reference
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mtimes matrix multiplication of polynomial matrices

times array multiplication of polynomial matrices

See also



Commands — Online reference

mtimes (*), times (.*)

mtimes (*), times (.*)

Matrix multiplication of polynomial matrices

Element-wise multiplication of polynomial matrices

C = A*B

C = mtimes(A,B[,tol])

C = A.*B

C = times(A,B[,tol])

The commands

C = A*B

C = mtimes(A,B)

return the matrix product of the polynomial matrices A and B. Any scalar
polynomial may multiply anything. Otherwise, the number of columns of A must
equal the number of rows of B. The macro employs zeroing based on the global
zeroing tolerance. The command

C = mtimes(A,B,tol)

works with zeroing specified by the relative tolerance tol.

Purpose

Syntax

Description
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mtimes (*), times (.*)

The commands

C = A.*B

C = times(A,B)

denote element-by-element multiplication. The polynomial matrices A and B must
have the same sizes unless one is a scalar. A scalar can be multiplied into
anything. The macro using zeroing based on the global zeroing tolerance. The
command

C = times(A,B,tol)

works with zeroing specified by the relative tolerance tol.

Let

X = [ 1+s  1

       0   1 ];   

Y = [ 2+s  s^2

       0  3*s^3 ];   

Then

Z1 = X*Y   

returns

Examples
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Z1 =

     2 + 3s + s^2     s^2 + 4s^3

     0                3s^3    

while

Z2 = X.*Y   

results in

Z2 =

     2 + 3s + s^2     s^2

     0                3s^3   

Note that

X*(s+3)^2   

equals

ans =

     9 + 15s + 7s^2 + s^3     9 + 6s + s^2

     0                        9 + 6s + s^2   

The macros employ basic MATLAB 5 operations.Algorithm
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The macro mtimes returns error messages if

§ it does not have enough input arguments

§ it has too many output arguments

§ the inner matrix dimensions do not agree.

The macro times reports an error if the matrix dimensions do not agree.

Both macros issue a warning if the input matrices have inconsistent variables.

mpower matrix power of polynomial matrices

power array power of polynomial matrices

Diagnostics

See also
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new2old, old2new

new2old, old2new

Convert a polynomial object to and from the format used in versions 1.5 and 1.6 of
the Polynomial Toolbox

Q = new2old(P)

[Q1,Q2,...,Qn] = new2old(P1,P2,...,Pn)

P = old2new(Q)

[P1,P2,...,Pn] = old2new(Q1,Q2,...,Qn)

In versions 1.5 and 1.6 of the Polynomial Toolbox, which are based on MATLAB

version 4, a polynomial matrix

P s P P s P sd
d( ) = + + +0 1 L

is stored as a 2-dimensional array of the form

 Q P P P

d

d=

L

N

MMMMMM

O

Q

PPPPPP

0 1
0

0

L
M

L0 0 0 NaN

The command

Purpose

Syntax

Description
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P = old2new(Q)

converts this matrix into a pol object – the new format. The command

Q = new2old(P)

works in the other direction.

Both macros accept several input and output arguments. If the number of output
arguments is less than the number of input arguments then the remaining output
arguments take over the names of their input counterparts.

Define in the new format the polynomial

P = 1+2*s+3*s^2   

MATLAB  returns

P =

     1 + 2s + 3s^2   

Converting to the old format according to

P = new2old(P)   

we see that

P =

     1     2     3     2

Examples



Commands — Online reference

new2old, old2new

     0     0     0   NaN   

Of course the new format can be re-created

P = old2new(P)   

MATLAB returns

P =

     1 + 2s + 3s^2   

The macros new2old and old2new use standard MATLAB 5 operations.

The macros new2old and old2new return error messages if they do not have
enough input arguments.

pol, lop polynomial matrix constructor

pol2mat, mat2pol conversion of polynomials and polynomial matrices
matrices from Polynomial Toolbox format to MATLAB or
Control System Toolbox format and vice-versa

pol2dsp, dsp2pol conversion of polynomials and polynomial matrices
from Polynomial Toolbox format to DSP format and
vice-versa

Algorithm

Diagnostics

See also
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norm

norm

Norm of a polynomial matrix or a polynomial matrix fraction

norm(P)

norm(P,'blk')

norm(P,'lead')

norm(P,'max')

norm(P,type)

norm(P,'blk',type)

norm(P,'lead',type)

norm(P,'max',type)

norm(N,D)

norm(N,D,2)

norm(N,D,'l',2)

norm(N,D,'r')

Purpose

Syntax
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norm(N,D,'r',2)

norm(N,D,Inf)

norm(N,D,'l',Inf)

norm(N,D,'r',Inf)

Norms of polynomial matrices

If P is a polynomial matrix with coefficient matrices P0, P1, …, Pd then

norm(P)

is the largest singular value of the block coefficient matrix [P0 P1 ... Pd]. The
number

norm(P,'blk')

is the same as norm(P). The number

norm(P,'lead')

is the largest singular value of the leading coefficient matrix, while

norm(P,'max')

is the greatest of the largest singular values of the coefficient matrices P0, P1, …
,Pd.

The numbers

Description
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norm(P,TYPE)

norm(P,'blk',TYPE)

equal the norm of type TYPE of the matrix [P0 P1 ... Pd], where TYPE is 1, 2, Inf,
or 'fro'. The quantities

norm(P,'lead',TYPE)

norm(P,'max',TYPE)

are similarly defined.

Norms for polynomial matrix fractions

Given a stable polynomial matrix D and a polynomial matrix N of compatible
dimensions the commands

norm(N,D)

norm(N,D,2)

norm(N,D,'l',2)

compute the H2  norm of the rational matrixD N−1 . The commands

norm(N,D,'r')

norm(N,D,'r',2)



Commands — Online reference

norm

compute theH2  norm of the rational matrix ND−1 . The commands are
synomymous with the command h2norm. For more details see the description of
h2norm.

The calls

norm(N,D,Inf)

norm(N,D,'l',Inf)

norm(N,D,'r',Inf)

return the H∞  norm of the rational matrix D N−1  or ND−1 . The command is
synonymous to hinfnorm. For more details see the description of hinfnorm.

Consider

P = [ 1+s  s^2

      3*s   4  ];   

The block and individual coefficient matrices are

P{:}   

ans =

     1     0     1     0     0     1

     0     4     3     0     0     0   

Examples
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P{0}   

ans =

     1     0

           0     4   

P{1}   

ans =

     1     0

     3     0   

P{2}   

ans =

     0     1

     0     0   

Here are some of the norms:

norm(P)   

ans =

    5.0400   
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norm(P,'max')   

ans =

     4   

norm(P,1)   

ans =

     4   

For examples of the computation of norms of polynomial matrix fractions see the
description of the commands h2norm and hinfnorm.

The macro uses standard MATLAB and Polynomial Toolbox operations.

An error message follows if there are too few or too many input arguments, if an
unknown command option is encountered, or, in case of the norms for matrix
fractions, the matrices have incompatible dimensions or incompatible variables, or
the denominator matrix is unstable.

h2norm

hinfnorm

computation of the H2  or H∞  norm of a stable polynomial
matrix fraction

Algorithm

Diagnostics

See also



Commands — Online reference

null

null

Null space of a polynomial matrix

Z = null(A[,tol])

Z = null(A,degree[,tol])

The command

Z = null(A)

computes a polynomial basis for the right null space of the polynomial matrix A,
that is,

AZ = 0

The basis is minimal in the sense of Forney, that is, Z is column reduced, and has
full column rank. Morever, the columns of Z are arranged according to decreasing
degrees. If Y is another polynomial basis then necessarily deg(Y,'col') ≥
deg(Z,'col').

If A has full column rank then Z is an empty polynomial matrix.

The command

Z = null(A,degree)

Purpose

Syntax

Description
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seeks a minimal basis assuming that it has degree degree or less. If no such
basis exists then the empty matrix is returned.

If degree is not specified then a miminal polynomial basis is computed by an
iterative scheme starting with a basis of degree 0.

If degree is negative then the function directly computes a minimal basis without
iteration using a computed upper bound for the degree of the basis. This may be
more time-consuming than iteration starting with a low degree.

An optional tolerance tol may be specified as an additional input argument. Its
default value is the global zeroing tolerance.

Consider

A = [ 1+s     s^2     1+s^3   4

       2   3+4*s+s^2    5     6 ];   

The command

Z = null(A)   

yields the null space

Z =

    -1.7 - 5.2s + 2.8s^2 + s^3    -4.6 - 0.14s - 2.1s^2

     2.4 - 2s                     -1.7 + 4.2e-016s

Examples
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    -1.8 - s                       2.1 - 2.1e-016s

     0.88 + 2s                     0.62 + 1.2s + s^2   

If A is a constant matrix then call the standard MATLAB macro null is called.
Otherwise first the rank of A is evaluated with the Polynomial Toolbox macro
rank. Next the null-spaces of Sylvester matrices of A of increasing orders are
extracted. The process is terminated when the number of columns of the
polynomial null space is equal to the nullity of A that follows from the rank
computation.

A description of the algorithm, although specialized to the case of the computation
of a coprime right matrix fraction from a left matrix fraction, is provided in Appendix
G of Chen (1984).

The macro issues error messages under the following conditions.

• Invalid Not-a-Number or Inf entries are encountered in the input matrix

• An invalid argument is found

rank rank of a polynomial matrix

xab solution of linear polynomial matrix equations

minbasis minimal basis

Algorithm

Diagnostics

See also
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pdg, smith

pdg, smith

Diagonalization of a polynomial matrix

Smith form of a polynomial matrix

[D,U,V,UI,VI] = pdg(A[,tol])

[S,U,V,UI,VI] = smith(A[,tol])

[S,U,V,UI,VI] = smith(A,'elo'[,tol])

[S,U,V] = smith(A,'moca'[,tol])

S = smith(A,'zeros'[,tol])    

The command

[D,U,V,UI,VI] = pdg(A,tol)

converts the polynomial matrix A to a diagonal matrix D by elementary operations
so that UAV = D. U and V are unimodular transformation matrices. The inverse
matrices UI= −U 1   and VI= −V 1  are also computed. A tolerance tol may be
specified as an additional input argument.

The command

[S,U,V,UI,VI] = smith(A)

Purpose

Syntax

Description
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computes the Smith form S of the polynomial matrix A. U and V are unimodular
matrices such that UAV = S. A polynomial matrix S is in Smith form if it is given by

S

s

s

sk

=

L

N

MMMMMM

O

Q

PPPPPP

1

2

0 0

0 0 0

0 0 0

0 0

L L

L L O L L

L

L L L

The integer k is the rank of S and the polynomial diagonal entries satisfy the
condition that s j  divides s j+1  for j k= −1 2 1, , ,L .

The command

 [S,U,V,UI,VI] = smith(A,'elo')

computes the Smith form by elementary operations. This is the default method.
The command

[S,U,V] = smith(A,'moca')

computes the Smith form of A by a “Monte Carlo” method. The call

S = smith(A,'zeros')

finally, returns the Smith diagonal form of a nonsingular polynomial matrix A based
on the computation of the zeros of A and their algebraic and geometric
multiplicities. The option 'zeros' can only be used for square matrices.
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U and V are unimodular transformation matrices and their inverse matrices are
UI= −U 1   and VI= −V 1 . The “Monte Carlo” algorithm (the option 'moca') does
not return UI and VI. The method based on zeros (the option 'zeros') does not
return any of the unimodular matrices U, V, UI and VI.

A tolerance tol may be specified as an additional input argument. Its default value
is the global zeroing tolerance.

Consider

A =  [ 1+s      0         0

        0   2+3*s+s^2     0

        0      2+s    4+4*s+s^2 ];  

Then the command

D = pdg(A)   

yields the diagonal form

D =

     1 + s     0         0

     0        -2 - s     0

     0         0        -4 - 8s - 5s^2 - s^3   

Inspection shows that D is not in Smith form. The Smith form of A follows as

Examples
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S = smith(A)   

S =

    -1.2     0                        0

     0      -1.7 - 2.5s - 0.85s^2     0

     0       0                       -4 - 8s - 5s^2 - s^3   

We check that the (3,3) entry divides the (2,2) entry by typing

S(3,3)/S(2,2)   

ans =

     2.4 + 1.2s   

Pdg

The matrix is reduced both row-wise and column-wise by a series of elementary
column and row operations (Kucera, 1979). At each step, the least degree nonzero
polynomial is found in the input matrix and then brought to the upper left-hand
corner by suitable row and column interchanges. Next the entry is used to reduce
all the elements in the first row and column. This process is repeated until all the
polynomials in the first row and column, other then the upper left-hand corner
element, are reduced to zero. Repetition of the above steps on the remaining rows
and columns produces a diagonal matrix.

Algorithm
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Smith

Option 'elo' (default)

The matrix is reduced both row-wise and column-wise by a series of elementary
column and row operations (Kucera, 1979). At each step the least degree nonzero
polynomial is found in the input matrix and brought to the upper left-hand corner by
suitable row and column interchanges. After this the entry is used to reduce all the
elements in the first row and column. This process is repeated until all the
polynomials in the first row and column, other than the upper left-hand corner
element, are reduced to zero. Repetition of the above steps for the remaining rows
and columns produces a diagonal matrix. For every new kth diagonal element it is
checked whether ak k− −1 1,  divides akk . If this the case then the algorithm can
proceed. If not then a greatest common divisor g of the two polynomials is
calculated with the help of gcd and expressed in the form

a p a q gk k kk− − + =1 1,

The (k–1)st and kth rows and columns are transformed by elementary row and
column operations to bring the matrix into the form
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a

g a

a
k k

kk

11

1 1

0 0

0 0 0

0 0 0

0 0 0 0

0 0

0 0

L L L L

O L L L

L L

L L

L L L

L L L L L L L

L L L

− −

× ×

× ×

L

N

MMMMMMMMM

O

Q

PPPPPPPPP

,

The major steps of the algorithm then are recommenced on the (k–1)st row and
column.

Option 'moca'

The option 'moca' uses a “Monte Carlo” method. These are the steps of the
algorithm:

1. Compute the Hermite form of the input matrix

2. Compute the Hermite form of the transpose of the output of the previous step

3. If the output of step 2 is not diagonal then repeat step 2

4. If the output is diagonal check if a(k–1, k–1) divides a(k, k)

5. If the output is not diagonal, or if a(k–1, k–1) does not divide a(k, k) then repeat
the steps 1 to 4 once more after pre- and postmultiplying the input matrix by two
random unimodular matrices
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6. If also the second complete run produces no solution then the computation is
cancelled and an error message is returned

Using this method we obtain only transformation matrices U and V  (but not their
inverses because the macro hermite does not return these inverses.

Option 'zeros'

If the 'zeros' option is activated then the macro first computes the zeros of A
with the macro roots and then evaluates their algebraic and geometric
multiplicities with the macro charact. The transformation matrices are not found
this way and the method applies to square matrices only.

The macros issue error messages if

§ an invalid option is encountered (smith only)

§ an invalid tolerance is specified

§ the input matrix is not square ('zeros' option of smith only)

§ the reduction fails in any of several ways

hermite Hermite form of a polynomial matrix

Diagnostics

See also
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pencan

Transformation of a nonsingular matrix pencil to Kronecker canonical form

[C,Q,Z,dims] = pencan(P)

[C,Q,Z,dims] = pencan(P,tol)

[C,Q,Z,dims] = pencan(P,'ord')

[C,Q,Z,dims] = pencan(P,'ord',tol)

The command

[C,Q,Z,dims] = pencan(P)

transforms the square nonsingular real pencil

P s P P s( ) = +0 1

to the real Kronecker canonical form

C s QP s Z
a sI

I se
( ) ( )= =

+
+

L
NM

O
QP

0

0

The matrix a is in real Schur form, that is, it is upper block triangular with the real
eigenvalues on the diagonal and the complex eigenvalues in 2×2 blocks on the

Purpose

Syntax

Description
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diagonal. The real matrix e is upper triangular with zeros on the diagonal and,
hence, is nilpotent. Q and Z are real nonsingular.

If the option 'ord' is included then a is in block diagonal form a = diag(a1,a2),
with a1 and a2 both in real Schur form. All eigenvalues of a1 have strictly positive
real parts and those of a2 have non-positive real parts.

The output argument dims contains the sizes [na ne] of a and e. If  the option
'ord' is included then dims contains the sizes [na1 na2 ne]  of a1, a2 and e.

The number tol is an optional tolerance that is used to decide which eigenvalues
of the pencil are infinite. Its default value is eps.

If the verbose property is enabled then the macro reports the relative error.

Consider the pencil

P = [s  -1  0  0  0  0

     0   s  0  0  0  0

     0   0 2+s -1 0  0

     0   0  0  s  0  0

     0   0  0  0  s -1

     0   0  0  0  1  0];   

We compute its Kronecker canonical form:

Examples
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[C,Q,Z,dims] = pencan(P); C, dims  

C =

     s    -1     0         0     0     0

     0     s     0         0     0     0

     0     0     2 + s    -1     0     0

     0     0     0         s     0     0

     0     0     0         0     1     s

     0     0     0         0     0     1

dims =

     4     2   

Inspection shows that we have

a e=

−

−

L

N

MMMM

O

Q

PPPP
=
L
NM

O
QP

0 1 0 0

0 0 0 0

0 0 2 1

0 0 0 0

0 1

0 0
,

“Ordered” transformation yields

[C,Q,Z,dims] = pencan(P,'ord'); C, dims   
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C =

     2 + s     0     0     0     0     0

     0         s     0     0     0     0

     0         0     s    -1     0     0

     0         0     0     s     0     0

     0         0     0     0     1     s

     0         0     0     0     0     1

dims =

     1     3     2   

Hence for the ordered form we have

a
a

a
a a e=

L
NM

O
QP = = −

L

N
MMM

O

Q
PPP

=
L
NM

O
QP

1

2
1 2

0

0
2

0 0 0

0 0 1

0 0 0

0 1

0 0
, , ,

Using ordered QZ transformation (see qzord) the two coefficient matrices P0 and
P1 of P are simultaneously transformed to upper triangular form. The ratios of the
diagonal entries of the transformed P0 and P1 that are infinite come last. If the
option ord is used in qzord then the finite ratios are ordered according to
decreasing real parts. After this the transformed pencil is block diagonalized by

Algorithm
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“nulling” the off-diagonal blocks with the help of plyap. The transformation is
completed by first making the result real and then transforming the various
diagonal blocks with the assistance of schur so that they assume the desired
forms.

The macro displays error messages in the following situations:

• the first input argument is not a square pencil

• the pencil is not real

• there are too many input arguments

• an unknown option is encountered

A warning message is issued if the relative residue is greater than 1e-6. The
relative residue is defined as the norm of C–QPZ divided by the norm of P. For the
purpose of this test the norm of a pencil is defined as the largest of the norms of its
coefficient matrices.

plyap solution of a two-sided linear pencil equation

qzord ordered QZ transformation

Diagnostics

See also
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pinit, gprop, pformat, gensym, tolerance, verbose

Initialize the Polynomial Toolbox

Set global properties

pinit

pinit GlobalPropertyValue

pinit GlobalPropertyValue1 GlobalPropertyValue2 …

gprop

gprop GlobalPropertyValue

gprop GlobalPropertyValue1 GlobalPropertyValue2 …

pformat

pformat OutputFormat

gensym

gensym DefaultSymbol

tolerance

tolerance ToleranceValue

Purpose

Syntax
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verbose

verbose no

verbose yes

The macro pinit must be called at the beginning of every Polynomial Toolbox
session. Typing

pinit

without input arguments sets the global properties equal to their default values. If
the command is followed by a blank space separated list of admissible values of
global properties then the corresponding global properties are set equal to the
prescribed values while the other properties remain at their defaults.

If used without input arguments the command

gprop

returns the list of current values of the global polynomial properties and the
admissible alternatives. The macro may also be used used to change one or more
global polynomial properties to new admissible values that are specified in the
blank space separated list following the command. The new values then are
displayed.

The pformat command switches between different display formats for polynomial
matrices.

Description
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pformat  same as  pformat coef

pformat coef matrix coefficients in order of ascending power

pformat rcoef matrix coefficients in order of descending powers

pformat block block row composite coefficient matrix

pformat symb symbolic format.

pformat symbs symbolic format with short coefficients.

pformat symbr symbolic format with rational coefficients (expressed in
the rational format of MATLAB).

In all “non-symbolic” polynomial formats the format of the scalar coefficients is
governed by the standard MATLAB command format.

The command gensym is used to set the default variable symbol.

gensym        default; same as gensym s

gensym s    variable for continuous-time operator

gensym p   variable for continuous-time operator

gensym z   variable for discrete-time operator

gensym q   variable for discrete-time operator

gensym d    variable for discrete-time backward shift(delay) operator
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gensym z^-1 variable for discrete-time backward shift(delay) operator

Similarly, the command tolerance sets the global tolerance as follows:

tolerance default; same as tolerance 1e-8

tolerance 1e-8   set the global tolerance equal to 1e-8

tolerance (1e-8) set the global tolerance equal to 1e-8

tolerance tol   set the global tolerance equal to tol

tolerance (tol)  set the global tolerance equal to tol

Here tol is any real number.

The verbose command is used to switch between different gobal verbose level as
follows:

verbose default; same as verbose no

verbose no     no comments during execution

verbose yes     provide comments during execution

After starting up MATLAB, typing

pinit   

provokes the response

Examples
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  Polynomial Toolbox initialized. To get started, type one of

  these: helpwin or poldesk. For product information, visit

  www.polyx.com or www.polyx.cz.

The command only works, however, if the Polynomial Toolbox directory is in the
MATLAB search path. The default global properties may be viewed after typing

gprop   

 Global polynomial properties:

PROPERTY NAME:      CURRENT VALUE:    AVAILABLE VALUES:

variable symbol     s                's','p','z^-

1','d','z','q'

zeroing tolerance   1e-008            any real number

verbose level       no               'no', 'yes'

display format      symbs            'symb', 'symbs', 'symbr'

                                     'coef', 'rcoef', 'block'

The default variable is changed to z by the command

gprop z   
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We may also change the display format, default symbol (once again), and the
tolerance, for instance by

pformat coef, gensym d, tolerance eps   

To inspect the changes one may type once again

gprop   

 Global polynomial properties:

PROPERTY NAME:      CURRENT VALUE:    AVAILABLE VALUES:

variable symbol     d                's','p','z^-

1','d','z','q'

zeroing tolerance   2.2204e-016       any real number

verbose level       no               'no', 'yes'

display format      coef             'symb', 'symbs', 'symbr'

                                     'coef', 'rcoef', 'block'

Finally, the command

pinit 1e-6 z^-1

is a shortcut for
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pinit

gprop 1e-6 z^-1

The macros use standard MATLAB 5 commands.

The macros return error messages if the input is inappropriate.

pprop set or modify the properties of a polynomial matrix

symbol return or modify the variable of a polynomial matrix

pol create a polynomial matrix object

Algorithm

Diagnostics

See also
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pinv

Pseudo-inverse of a full-rank polynomial matrix

[Q,d] = pinv(P[,tol])

[Q,d] = pinv(P,'int'[,tol])

[Q,d] = pinv(P,'def'[,tol])

Given an n m×  full rank polynomial matrix P  the command

[Q,d] = pinv(P)

produces an m n×  polynomial matrix Q  and a scalar monic polynomial d such that
the rational matrix Q/d is the Moore-Penrose pseudo-inverse of the matrix P, that
is,

PQP Pd

QPQ Qd

=
=

Moreover, PQ  and QP  are symmetric, that is, PQ PQTb g = , QP QPTb g = .

The default method is 'int', and relies on the inv routine with the interpolation
option. The option 'def' calls the corresponding “definition” option of inv.

Purpose

Syntax

Description
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The optional input parameter tol is a relative tolerance for zeroing and rank
testing. Its default value is the global zeroing tolerance, except in rank testing,
where the default value is the MATLAB default.

Consider the polynomial matrix

P = [1+s s^2 3];   

The command

[Q,d] = pinv(P)   

results in

Q =

     1 + s

     s^2

     3

d =

     10 + 2s + s^2 + s^4   

It is easy to check that the various properties hold.

Given the polynomial equation Px a= , with P wide full rank and a a given
polynomial vector, the pseudo inverse may be used to determine a rational solution
x. For the given matrix P, for instance, taking a = 1 results in the rational solution

Examples
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x = Qa/d

where

a = 1; Q*a   

ans =

     1 + s

     s^2

     3  

The pseudo-inverse Q is defined as follows:

§ If P is wide then Q d P PPT T/ ( )= −1

§ If P is tall then Q d P P PT T/ ( )= −1

§ If P is square then Q d P/ = −1Q = P

The inverses are computed using inv.

The macro returns an error message if the input matrix does not have full rank to
working precision.

inv inverse of a polynomial matrix

Algorithm

Diagnostics

See also
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plqg

Polynomial solution of LQG problems

[Nc,Dc] = plqg(N,D,Q1,R1,Q2,R2)

[Nc,Dc] = plqg(N,D,Q1,R1,Q2,R2,'l')

[Nc,Dc] = plqg(N,D,Q1,R1, Q2,R2,'r')

Consider a linear time-invariant plant with transfer matrix

P v D v N v( ) ( ) ( )= −1

where v  can be any of the variables s, p, z, q, z−1 or d . The commands

[Nc,Dc] = plqg(N,D,Q1,R1,Q2,R2)

[Nc,Dc] = plqg(N,D,Q1,R1,Q2,R2,'l')

compute an LQG optimal regulator as in Fig. 6 with transfer matrix

C v N v D vC C( ) ( ) ( )= −1

Purpose

Syntax

Description
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Fig. 6. LQG feedback structure

The controller minimizes the steady-state value of

E y t Q y t u t R u tT T( ) ( ) ( ) ( )2 2+e j
Q2  andR2  are symmetric nonnegative-definite weighting matrices. The symmetric
nonnegative-definite matrices Q1  and R1 represent the intensities (covariance
matrices) of the input and measurement white noises, respectively, and need to be
nonsingular.

Example 1  (Kucera, 1991, pp. 298–303). Consider the discrete-time plant
described by the left matrix fraction D z N z−1( ) ( ) , where

N = [1; 1]

D = [z-1/2 0; 0 z^2]

Examples
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Define the nonnegative-definite matrices

Q1 = 1;

Q2 = [7 0; 0 7];

R1 = [0 0; 0 1];

R2 = 1;

The optimal LQG controller is obtained by typing

 [Nc,Dc] = plqg(N,D,Q1,R1,Q2,R2)

MATLAB returns

Nc =

    -0.10633z^2     0

Dc =

     -0.21266z^2 - 0.85065z^3              0

     0.10633 + 0.34409z^2 - 1.3764z^3     1.1756

 If the same plant is described by a right matrix fraction description N z D z( ) ( )−1 , with

N = [z^2; z-1/2]

D = z^2*(z-1/2)
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then the controller results by typing

[Nc,Dc] = plqg(N,D,Q1,R1,Q2,R2, 'r')

 Constant polynomial matrix: 1-by-2

Nc =

     0.5     0

Dc =

     1 + 4z

Example 2.  Consider a continuous-time problem described by

N = [1; 1]

D = [s-2 0; 0 s^2+1]

and the weighting matrices

Q1 = 1;

R1 = eye(2);

Q2 = [10 0; 0 2];

R2 = 1;

The call
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[Nc,Dc] = plqg(N,D,Q1,R1,Q2,R2)

returns the optimal LQG feedback controller

Nc =

    -1.3436 + 0.94635s     17.0728

Dc =

    -0.61922 + 0.12144s         5.0345 + s

     3.2092 + 2.5541s + s^2    -7.5191 - 16.4344s

The closed-loop poles of the optimal feedback system follow as

 roots(N*Nc+D*Dc)

ans =

 -3.72972478386939

 -2.22996241633438

 -0.42364369708415 + 1.07974078889846i

 -0.42364369708415 - 1.07974078889846i

 -0.38868587951944 + 1.05190312987575i

 -0.38868587951944 - 1.05190312987575i
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The computation involves two spectral factorizations and the solution of a
Diophantine equation solution. The algorithm is derived in Kucera (1991, pp. 306–
310).

The macro displays error messages in the following situations:

• There are not enough input arguments

• The denominator matrix is not square

• The input arguments have inconsistent sizes

• The plant is not proper

• The covariance matrices are not square symmetric

• The weighting matrices are not square symmetric

• R1 or R2  is not positive-definite

splqg scalar LQG design

Algorithm

Diagnostics

See also
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plyap

Solution of a two-sided equation with matrix pencil coefficients

[X,Y] = plyap(A,B,C)

[X,Y] = plyap(A,B,C,tol)

Given square matrix pencils A(s) = A0+A1s and B(s) = B0+B1s (that is, polynomial
matrices of degree 1) and a pencil of consistent dimensions C(s) = C0+C1s the
macro returns constant matrices X and Y that are the solution of

A s X YB s C s( ) ( ) ( )+ =

The equation has a unique solution if and only if the pencils A and B have no
common zeros (including zeros at infinity). If this condition is not satisfied then the
solution may be inaccurate.

The optional parameter tol is a tolerance that is used in determining whether A or
B is upper or lower triangular. Its default value is sqrt(eps).

If the verbose property is enabled then the macro reports the relative residue,
which is defined as the ratio of the norm of  A s X YB s C s( ) ( ) ( )+ −  to the largest of
the norms of  A, B and C. For the purpose of this test the norm of a polynomial
matrix is defined as the norm of its composite coefficient matrix.

Purpose

Syntax

Description
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Consider the pencil Lyapunov equation with coefficient matrices

A = [3   7   9

    11  -1  -19

     1  20   0];

B = [-3+3*s    -10+7*s

     4+15*s    -11-6*s];

C = [-19+10*s     3

     6+8*s       17

     -4        -2+6*s];   

The command

[X,Y] = plyap(A,B,C)   

results in the output

X =

   -2.1411    3.1965

    0.0461    0.0255

   -1.5236    0.4855

Examples
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Y =

    0.4878    0.5691

    0.3902    0.4553

    0.7317   -0.1463   

If the matrix B is modified to

B = [-3+3*s    -10

     4+15*s    -11];   

 then A has two zeros at infinity and B one zero at infinity, and the computation
fails:

[X,Y] = plyap(A,B,C)   

Warning: Matrix is singular to working precision.

plyap warning: Solution has Not-a-Number or Infinite

entries

X =

   Inf   Inf

   Inf   Inf

   Inf   Inf
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Y =

   Inf  -Inf

   NaN   NaN

   NaN   NaN   

With the help of the QZ algorithm (see qz) the pencil B is transformed to upper
triangular form. When this has been done the resulting equations may be solved for
X and Y column by column from the left to the right.

Before transforming B it is checked whether A or B is upper or lower triangular. If
this is the case then the equation may be rearranged so that B is upper triangular
without the QZ transformation. For the triangularity test the tolerance tol is used.

The macro displays error messages in the following situations :

• The pencil A is not square

• The pencil B is not square

• C has inconsistent dimensions

A warning message is issued if

• The solution has Not-a-Number or Infinite entries

• The relative residue is greater than 1e-6

Algorithm

Diagnostics
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pencan transformation of a matrix pencil to Kronecker canonical formSee also
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pme

Polynomial Matrix Editor

pme

The Polynomial Matrix Editor (PME) is recommended for creating and editing
polynomial and standard MATLAB matrices of medium to large size, say from about
4 4×  to 30 35× . Matrices of smaller size can easily be handled in the MATLAB

command window with the help of monomial functions, overloaded concatenation,
and various applications of subscripting and subassigning. On the other hand,
opening a matrix larger than 30 35×  in the PME results in a window that is difficult
to read.

Type pme to open the main window called Polynomial Matrix Editor. This window
displays all polynomial matrices (POL objects) and all standard MATLAB that exist in
the main MATLAB workspace. It also allows you to create a new polynomial or
standard MATLAB matrix. In the Polynomial Matrix Editor window you can

• create a new polynomial matrix, by typing its name and size in the first
(editable) line and then clicking the Open button

• modify an existing polynomial matrix while retaining its size and other
properties. To do this just find the matrix name in the list and then double click
the particular row

Purpose

Syntax

Description
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• modify an existing polynomial matrix to a large extent (for instance by changing
also its name, size, variable symbol, etc.): To do this, first find the matrix name
in the list and then click on the corresponding row to move it up to the editable
row. Next type in the new required properties and finally click Open

Each of these actions opens another window called Matrix Pad that serves for
editing the matrix.

In the Matrix Pad window the matrix entries are displayed as boxes. If an entry is
too long so that it cannot be completely displayed then the corresponding box
takes a slightly different color (usually more pinkish.)

To edit an entry just click on its box. The box becomes editable and large enough
to display its entire content. You can type into the box anything that complies with
the MATLAB syntax and that results in a scalar polynomial or constant. Of course
you can use existing MATLAB variables, functions, etc. The program is even more
intelligent and handles some notation going beyond the MATLAB syntax. For
example, you can drop the * (times) operator between a coefficient and the related
polynomial symbol (provided that the coefficient comes first). Thus, you can type
2s as well as 2*s.

To complete editing the entry push the Enter key or close the box by using the
mouse. If you have entered an expression that cannot be processed then an error
message is reported and the original box content is recovered.

To bring the newly created or modified matrix into the MATLAB workspace finally
click Save or Save As.
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The macro uses standard MATLAB 5 commands.

pol create a polynomial matrix object

Algorithm

See also
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pol, lop

Create a polynomial matrix

Convert a constant matrix or a matrix in symbolic toolbox format to a polynomial
matrix

P = pol(A,d)

P = pol(A,d,PropertyValue1,...)

P = pol(Q)

P = lop(A,d)

P = lop(A,d,PropertyValue1,...)

P = lop(Q)

Given a constant matrix A =  [P0 P1 P2 ... Pd] the command

P =  pol(A,d)

creates a polynomial matrix object P that defines the polynomial matrix

P s s s sd( ) = + + + +P0 P1 P2 Pd2 L

Purpose

Syntax

Description
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As further arguments assignable PropertyValue arguments may be listed, in
particular the variable of the polynomial matrix. If none are listed then the default
values are chosen. Type help pprop for details on assignable properties.

If not specified by a PropertyValue argument then the variable string v copies the
current value of the global variable symbol. The polynomial matrix variable string
may be

§ the continuous-time operator s (default) or p

§ the discrete-time forward shift operator z or q

§ the discrete-time backward shift (delay) operator d or z−1

If A is a zero matrix and/or d = -Inf then P is a zero polynomial matrix. If A and/or
d is empty then an empty polynomial matrix object is created.

The command

P =  pol(Q)

returns P = Q if Q is already a polynomial matrix object. If Q is a standard MATLAB

constant matrix, then the command returns the corresponding zero degree
polynomial matrix object.

If Q is a symbolic matrix of the Symbolic Toolbox, then

P = pol(Q)
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converts Q to a polynomial matrix P. The variable string copies the current value of
the global variable symbol.

The command

P = lop(A,d)

expects the compound coefficient matrix A to be arranged in the reversely ordered
form

A =  [Pd ... P2  P1 P0 ]

We create the  2 2×  polynomial matrix

P s
s s s

s s
s s( ) = + + −

− +

L
NMM

O
QPP

=
−
L
NM

O
QP +

−L
NM

O
QP +

L
NM

O
QP

1 2

3 4 5

1 0

3 0

1 1

4 0

2 0

0 5

2

2
2

P0 P1 P2
1 24 34 124 34 123

of degree 2 in the variable s by the commands

P0 = [1 0; -3 0];

P1 = [1 -1; 4 0];

P2 = [2 0; 0 5];

P = pol([P0 P1 P2],2)   

This results in

Examples
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P =

     1 + s + 2s^2    -s

    -3 + 4s           5s^2   

We redefine P as a polynomial matrix in the variable z by the command

P = pol([P0 P1 P2],2,'z')

so that

P =

     1 + z + 2z^2    -z

    -3 + 4z           5z^2   

Note how setting the variable property to z causes the result to be displayed as a
polynomial matrix in the variable z.

Finally, typing

P = pol(zeros(1,3)), Q = pol(zeros(0,3))   

results in

Zero polynomial matrix: 1-by-3,  degree: -Inf

P =
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     0     0     0

Q =

Empty polynomial matrix: 0-by-3  

The macros use standard MATLAB 5 commands.

The macro returns error messages if the input is incorrect or inconsistent.

pprop set or modify the properties of a polynomial matrix

Algorithm

Diagnostics

See also
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pol2dsp

Conversion of a polynomial or polynomial matrix to DSP format

M = pol2dsp(P)

The command

M = pol2dsp(P)

converts the polynomial or polynomial matrix P in Polynomial Toolbox format to
DSP format.

In DSP format a polynomial is represented as a row vector whose entries are the
coefficients of the polynomial according to ascending powers. A polynomial matrix
is a cell array of the same dimensions as the polynomial matrix, with each cell a
row vector representing the corresponding entry of the polynomial matrix in DSP
format. The DSP format is typically used for discrete-time systems.

Conversion of a (scalar) polynomial:

P = 1+2*q+3*q^2;

M = pol2dsp(P)   

M =

     1     2     3   

Purpose

Syntax

Description

Examples
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Conversion of a polynomial matrix:

P = [ 1+2*q 3+4*q^2 ];

M = pol2dsp(P)   

M =

    [1x3 double]    [1x3 double]   

View the entries:

M{1,1}, M{1,2}   

ans =

     1     2     0

ans =

     3     0     4   

The macro pol2dsp uses standard MATLAB 5 operations.

The macro pol2dsp displays no error messages.

dsp2pol conversion from DSP format to Polynomial Toolbox format

pol2mat conversion from Polynomial Toolbox format to MATLAB or Control
System Toolbox format

Algorithm

Diagnostics

See also
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mat2pol conversion from MATLAB or Control System Toolbox format to
Polynomial Toolbox format
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pol2mat

Conversion of a polynomial or polynomial matrix to MATLAB or Control System
Toolbox format

M = pol2mat(P)

M = pol2mat(P,'leg')

The command

M = pol2mat(P)

converts the polynomial or polynomial matrix P in Polynomial Toolbox format to
MATLAB or Control System Toolbox format.

In MATLAB format a polynomial is represented as a row vector whose entries are
the coefficients of the polynomial according to descending powers. In Control
System Toolbox format a polynomial matrix is a cell array of the same dimensions
as the polynomial matrix, with each cell a row vector representing the
corresponding entry of the polynomial matrix in MATLAB format. If the polynomial
matrix consists of a single element then in Control System Toolbox format it is
represented as a row vector with entries in MATLAB format.

To comply with an older standard in the Control System Toolbox, polynomial
matrices consisting of a single column may be represented as a matrix whose rows

Purpose

Syntax

Description
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are the polynomial entries in MATLAB format. The macro pol2mat converts to this
older format if the legacy option 'leg' is used.

Conversion of a (scalar) polynomial:

P = 1+2*s+3*s^2;

M = pol2mat(P)

M =

     3     2     1   

Conversion of a polynomial matrix:

P = [ 1+2*s 3+4*s^2 ];

M = pol2mat(P)

M =

    [1x3 double]    [1x3 double]   

View the entries:

M{1,1}, M{1,2}

ans =

     0     2     1

Examples
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ans =

     4     0     3   

However, using the legacy option,

Q = [  1+2*s

      3+4*s^2 ];

is converted to

pol2mat(Q,'leg')

ans =

     0     2     1

     4     0     3   

The macro pol2mat uses standard MATLAB 5 operations.

The macro pol2mat displays no error messages.

mat2pol conversion from MATLAB or Control System Toolbox format to
Polynomial Toolbox format

pol2dsp conversion from Polynomial Toolbox format to DSP format

dsp2pol conversion from DSP format to Polynomial Toolbox format

Algorithm

Diagnostics

See also
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pol2root, root2pol

Extract zeros and gains from a polynomial matrix

Construct a polynomial matrix from its zeros and gains

[Z,K] = pol2root(P)

P = root2pol(Z,K[,var])

P = root2pol(Z[,var])

The command

[Z,K] = pol2roots(P)

returns a cell array Z that contains the roots and a two-dimensional array K that
contains the gains of the entries of the polynomial matrix P.

Conversely, given a cell array Z that contains the roots and a two-dimensional
array K that contains the gains of the entries of a polynomial matrix the command

P = root2pol(Z,K)

returns the polynomial matrix P. If K is missing then it is supposed to be a ones-
array.

The commands

Purpose

Syntax

Description
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P = root2pol(Z,K,VAR)

P = root2pol(Z,VAR)

allow the user to specify the variable of P.

Consider the polynomial matrix

P = [ 1+2*s  s^2/3  1+s+s^2

        0    1+s^3     2    ];   

The roots and gains follow as

[Z,K] = pol2root(P)   

MATLAB returns

Z =

    [-0.5000]    [2x1 double]    [2x1 double]

           []    [3x1 double]              []

K =

    2.0000    0.3333    1.0000

         0    1.0000    2.0000   

Inspection of the (1,2)th entry of Z by typing

Examples
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Z{1,2}   

yields the expected result

ans =

     0

     0   

We recreate the polynomial matrix, but now in the variable p, by the command

Q = root2pol(Z,K,'p')   

Q =

     1 + 2p     0.33p^2                               1 +

p + p^2

     0          1 + 3.3e-016p - 5.6e-016p^2 + p^3     2

The macros pol2root and root2pol use standard MATLAB 5 and Polynomial
Toolbox operations.

The macro root2pol returns error messages under the following circumstances

§ the roots do not form a cell array

§ the roots and gains do not have matching dimensions

§ the zeros are not represented as a vector

Algorithm

Diagnostics



Commands — Online reference

pol2root, root2pol

pol polynomial matrix constructor

roots roots of a polynomial matrix

zpk2lmf, zpk2rmf

lmf2zpk, rmf2zpk

conversion from Control System Toolbox zpk format
to a left or right matrix fraction, and vice-versa

See also
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polblock

Create a Simulink block for a polynomial matrix fraction

polblock

Type

simulink

to run SIMULINK. When the Blocksets & Toolboxes icon is double-clicked then the
Polynomial Toolbox icon automatically appears as in Fig. 7, provided that the
Polynomial Toolbox directory is included in the MATLAB search path.

Fig. 7. Blocksets and Toolboxes Library window

Purpose

Syntax

Description
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By double-clicking the Polynomial Toolbox icon the Polynomial Library window is
opened. Alternatively, typing

polblock

opens the Polynomial Library window (Fig. 8) directly.

Fig. 8. Polynomial Matrix Fraction Library window

The Polynomial Fraction Block can be handled as any other SIMULINK built-in
blocks to form desired models. By double-clicking the icon the window of Fig. 9 or a
window like it appears.
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Fig. 9. PMF parameters window
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The window is ready for directly typing in the matrices. Alternatively, given two
polynomial matrices P and Q in the MATLAB workspace, you may just type P and Q
into the dialogue prompts of this window.

The variable of the polynomial matrices determines whether the system is
continuous-time (s and p) or discrete-time (z, q, d or z−1). The variable may be
overwritten by setting it in the “Force variable” window.

The block parameters window of Fig. 9 defines the numerator and denominator
polynomials

P s Q s s( ) , ( )= = +1 1

and, hence, describes the SISO system with transfer function

H s
s

( ) =
+
1

1

After closing the block parameters input window the Matrix Fraction icon may be
dragged to the system model window. Adding “Step” and “Scope” blocks we easily
construct the simple block diagram of Fig. 10.

Running the simulation yields the expected output (Fig. 11).

Example
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Fig. 10. A simple SIMULINK block diagram

Fig. 11. Simulated step response
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The macro is based on the SIMULINK's built-in blocks State space (Linear library)
and Discrete state space (Discrete library) and uses the masking ability of SIMULINK

along with the Polynomial Toolbox functions lmf2ss and rmf2ss for the
transformation of the polynomial description of a system into state space form.

The macro displays no error messages when creating the library. If inconsistent
data (such as a non-proper polynomial matrix fraction) are entered, however, then
a standard error message may appear during the internal transformation into the
state space model.

lmf2ss, rmf2ss conversion of a left or right polynomial matrix fraction to a
state space representation

Algorithm

Diagnostics

See also
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polfit

Fit polynomial matrix to data

[P,S] = polfit(pnts,Y)

[P,S] = polfit(pnts,Y,N)

[P,S] = polfit(pnts,Y,[],tol)

[P,S] = polfit(pnts,Y,N,tol)

Given a set of complex numbers pnts, a three-dimensional array Y such that
Y(:,:,i) represents a polynomial matrix evaluated at pnts(i), and a matrix of
degrees N, the command

P = polfit(pnts,Y,N)

finds a polynomial matrix P whose entries have degrees less than or equal to the
corresponding entry of N such that

P i Y i( ( )) (:,:, )pnts ≈

in a least-squares sense. N may also be a scalar in which case it applies to each
entry of P. If the argument N is missing then it is set equal to length(X)-1. The
command

[P,S] = polfit(pnts,Y,N)

Purpose

Syntax

Description
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returns the polynomial matrix P and a structure array S for use with polyval to
obtain error estimates on predictions. See the MATLAB command polyfit for
details.

The commands

polfit(pnts,Y,N,tol)

polfit(pnts,Y,[],tol)

work with zeroing specified by the input tolerance tol.

The length of pnts and the third size of Y must agree. The first and second sizes
of Y must equal the size of N, unless N is a scalar.

Suppose that

pnts = 0:1:4;   

and

Y   

Y(:,:,1) =

     1     0     0

Y(:,:,2) =

     1     1     1

Examples



Commands — Online reference

polfit

Y(:,:,3) =

     1     2     4

Y(:,:,4) =

     1     3     9

Y(:,:,5) =

     1     4    16   

Then

P = polfit(pnts,Y)   

returns

P =

     1     s     s^2   

The macro is based on the standard MATLAB routine polyfit.

The macro issues error messages under the following conditions:

• There are too few or too many input arguments

• The first argument is not a vector

• The first or second argument is not a numeric array

Algorithm

Diagnostics
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• The degree matrix is not an integer array

• The sizes of the data sets do not match

• The size of the degree matrix does not match that of the data array

polyval evaluate a polynomial matrix at a given set of pointsSee also
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polpart

Polynomial matrix part extraction

BH = polpart(B)

BH = polpart(B,n)

[BL BR] = polpart(B)

[BL BR] = polpart(B,n)

If B is a continuous-time para-Hermitian polynomial matrix, that is, a polynomial
matrix in the variables s or p such that B = B', then the command

BH = polpart(B)

extracts a polynomial matrix BH such that

B = BH' + BH                 

If B is a polynomial matrix in the variable z then it is considered to represent the
discrete-time para-Hermitian (no longer polynomial) matrix P(z) = z n− B(z), where n
is the “degree.” Thus, the discrete-time para-Hermitian polynomial matrix

P z
z z

z z
( )

/

/
=

+
+

L
NM

O
QP

1 2

2 3 32 2

Purpose

Syntax

Description
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for instance, is represented by the polynomial matrix

B z z P z
z z z

z z
( ) ( )= = +

+

L
NMM

O
QPP

2
3 2 2

2 4
2

2 3 3

where n = 2.

In the discrete-time case the command

BH = polpart(B,n)

yields a polynomial matrix BH such that

P z z zT( ) ( ) ( / )= +BH BH 1

Equivalently,

B = BH' + shift(BH,n)

Note that the prime denotes adjugation of discrete-time polynomial matrices in the
sense of the Polynomial Toolbox.

If n is not specified then it is taken equal to floor(deg(B)/2).

If the variable of B is q, d or z−1 then the command works similarly.

If B does not represent a para-Hermitian matrix then the command

[BL BR] = polpart(B,n)
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extracts left and right parts of the square discrete-time polynomial matrix B such
that

 B = BL' + shift(BR,n)

Consider the continuous-time para-Hermitian polynomial matrix

B = [ 1+s^2  2*s

      -2*s    4  ];   

The command

BH = polpart(B)   

returns

BH =

     0.5 + 0.5s^2     0

    -2s               2   

We see that B = BH + BH'.

Next, consider the discrete-time para-Hermitian matrix

P z
z z

z z
( )

/

/
=

+
+

L
NM

O
QP

1 2

2 3 32 2

This is represented by the polynomial matrix

Examples
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B z z P z
z z z

z z
( ) ( )= = +

+

L
NMM

O
QPP

2
3 2

2 4
2

2 3 3

where the “degree” is n = 2.

Letting

B = [ z^3+z  2*z^2

       2*z^2  3*z^4+3 ];   

the command

BH = polpart(B)   

returns

BH =

     z     1

     1     3z^2   

Indeed, P z z zT( ) ( ) ( / )= +BH BH 1 .

If we modify B according to

B(1,1) = z^3   

B =
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     z^3      2z^2

     2z^2     3 + 3z^4   

then it represents the matrix

P z z B z
z

z z
( ) ( )

/
= =

+
L
NM

O
QP

−2
2 2

2

2 3 3

This matrix is no longer para-Hermitian. The command

[BL BR] = polpart(B)   

yields

BL =

     0     1

     1     3z^2

BR =

     z     1

     1     3z^2   

Indeed,
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BL BRT z z
z

z

z
( / ) ( )

/
1

0 1

1 3

1

1 32 2+ =
L
NM

O
QP +

L
NM

O
QP

equals P.

The macro uses basic MATLAB and Polynomial Toolbox operations.

The macro issues error messages under the following conditions:

§ The input polynomial matrix is not square

§ Two output arguments are encountered for a continuous-time input matrix

§ The degree offset is invalid

A warning is issued if the polynomial matrix is not para-Hermitian when it is
expected to be.

ctranspose (') conjugate transpose of a polynomial matrix

axxab, xaaxb solution of symmetric linear polynomial matrix equations

spf spectral factorization of symmetric polynomial matrices

Algorithm

Diagnostics

See also
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polyder

Differentiate polynomial matrices

Q = polyder(P)

Q = polyder(P,n)

The command

Q = polyder(P)

computes the first derivative of the polynomial matrix P, while

Q = polyder(P,n)

computes its nth derivative.

Consider

P = [ 1+s  s^2

      3*s   4  ];   

We obtain successively

P1 = polyder(P)   

P1 =

Purpose

Syntax

Description

Examples



Commands — Online reference

polyder

     1     2s

           3     0   

P2 = polyder(P,2)   

Constant polynomial matrix: 2-by-2

P2 =

     0     2

     0     0   

P3 = polyder(P,3)   

Zero polynomial matrix: 2-by-2,  degree: -Inf

P3 =

     0     0

     0     0   

The macro uses standard MATLAB and Polynomial Toolbox operations.

An error message follows if an invalid second input argument is encountered.

Algorithm

Diagnostics
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polyval

Evaluate a polynomial matrix at a given set of points

ev = polyval(P,pnt)

[ev,delta] = polyval(P,pnt,S)

ev = polyval(P,pnt,[],tol)

[ev,delta] = polyval(P,pnt,S,tol)

If P is a polynomial matrix and pnt a given scalar then

ev = polyval(P,pnt)

evaluates the polynomial matrix P in the complex point pnt. If pnt is a vector of
points pnt = [pnt1 pnt1 … pntn] then ev is the 3-dimensional array of
values

ev(:,:,i) = P(pnti)

The command

[ev,delta] = polyval(P,pnt,S)

uses the output structure array S generated by polfit to obtain error estimates
delta on predictions. If pnt is a vector then delta is a 3-dimensional array.

Purpose

Syntax

Description
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The commands

ev = polyval(P,pnt,S,tol)

ev = polyval(P,pnt,[],tol)

evaluate the polynomial matrix P in the vector pnt and set to zero all entries in the
result whose magnitude is less than tol.

Consider the polynomial matrix

P = [ 1  s  s^2 ];   

and let pnt be the array

pnt = 0:1:4;   

Then

ev = polyval(P,pnt)   

returns

ev(:,:,1) =

     1     0     0

ev(:,:,2) =

     1     1     1

Examples
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ev(:,:,3) =

     1     2     4

ev(:,:,4) =

     1     3     9

ev(:,:,5) =

     1     4    16   

For an application involving the structure array S see the description of the routine
polfit.

The macro uses the standard MATLAB routine polyval.

The macro issues error messages if the set of evaluation points is empty or is not a
vector.

polfit fit a polynomial matrix to data

Algorithm

Diagnostics

See also
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pplace

Pole placement by polynomial methods

[Nc,Dc] = pplace(N,D,poles), [Nc,Dc]=pplace(N,D,poles,'l')

[Nc,Dc] = pplace(N,D,poles,'r')

[Nc,Dc,E,F,degT] =

pplace(N,D,poles),[Nc,Dc]=pplace(N,D,poles,'l')

[Nc,Dc,E,F,degT] = pplace(N,D,poles,'r')

[Nc,Dc] = pplace(N,D,R)

[Nc,Dc] = pplace(N,D,R,'r')

Given a linear time-invariant plant transfer matrix

P v D v N v( ) ( ) ( )= −1

where v  can be any of s, p, z, q,  z−1 and d , and a vector of desired closed-loop
pole locations poles,  the commands

[Nc,Dc] = pplace(N,D,poles)

[Nc,Dc] = pplace(N,D,poles,'l')

compute a controller with transfer matrix

Purpose

Syntax

Description
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C v N v D vC C( ) ( ) ( )= −1

such that the feedback shown in Fig. 12 places the closed-loop poles at the desired
locations poles. The multiplicity of the poles is increased if necessary. The
resulting system may have real or complex coefficients depending on whether or
not the desired poles are self-conjugate.

For the same plant and the same desired locations vector, the command

[Nc,Dc,E,F,degT]=pplace(N,D,poles)

may be used to get the parameterization

C v N v E v T v D v F v T vC c( ) ( ) ( ) ( ) ( ) ( ) ( )= + − −b gb g 1

Fig. 12. Feedback structure
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of all other controllers yielding the same dynamics. T v( )  is an arbitrary polynomial
matrix parameter of compatible size and of degree bounded by degT.

Note: The macro is intended for single-input single-output plants. It does its job for
multi-input multi-output systems as well but the user should be aware of the fact
that just assigning pole locations need not be enough. In the multi-input multi-
output case, the desired behavior typically depends also on the closed-loop
invariant polynomials rather than on the pole locations only. In fact, the assignment
of invariant polynomials is very easy. All it needs is to put the desired invariant
polynomials pi  into a diagonal matrix R v( ) of the same size as D v( ) and call

[Nc,Dc] = pplace(N,D,R)

Dually, if the plant transfer matrix is given by

P v N v D v( ) ( ) ( )= −1

then the command

[Nc,Dc] = pplace(N,D,poles,'r')

computes a desired controller transfer matrix in the form

C v D v N vC C( ) ( ) ( )= −1

while the command

[Nc,Dc,E,F,degT] = pplace(N,D,poles,'r')
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gives rise to the parametrization

C v D v T v F v N v T v E vc C( ) ( ) ( ) ( ) ( ) ( ) ( )= − +−b g b g1

T v( )  is an arbitrary polynomial matrix parameter of compatible size and degree up
to  degT.

To prescribe not only the locations of the poles but also their distribution among the
invariant polynomials pi  put them into a diagonal matrix R v( )  of the same size as
D v( )  and call

[Nc,Dc] = pplace(N,D,R,'r').

Note:  If the plant is strictly proper (or strictly causal)t then the resulting controller is
always proper (causal). Otherwise its properness (causality) is not guaranteed and
should be checked separately.

Noce: The macro handles only coprime fraction descriptions of the plant. If the
fraction has a common factor then the user should cancel it before running
pplace.

Consider a simple continuous-time plant described by

d=2-3*s+s^2,n=s+1

d =

     2 - 3s + s^2

Example
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n =

     1 + s

that has two (unstable) poles

roots(d)   

ans =

    2.0000

    1.0000   

The poles may be shifted arbitrarily with a first order controller. The resulting
feedback system has three poles. Let us place them to the locations s1 1= − ,
s j2 1= − +  and s j3 1= − − . A corresponding controller results from

[nc,dc]=pplace(n,d,[-1,-1+j,-1-j])   

nc =

     5s

dc =

     1 + s   

and has the transfer function



Commands — Online reference

pplace

n s

d s
s
s

c

c

( )

( )
=

+
5

1
.

Indeed,

r=d*dc+n*nc   

r =

     2 + 4s + 3s^2 + s^3   

and

roots(r)   

ans =

  -1.0000 + 1.0000i

  -1.0000 - 1.0000i

  -1.0000   

as desired. There are no other proper controllers placing poles exactly that way as

[nc,dc,f,g,degT]=pplace(n,d,[-1,-1+j,-1-j])

nc =

     5s
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dc =

     1 + s

f =

     2 - 3s + s^2

g =

     1 + s

degT =

  -Inf   

There is no degree of freedom offered by the parameter T s( ) = 0  in this example.

Given P D N= −1  the macro computes C N DC C= −1 by solving the linear polynomial
matrix equation DD NN Rc c+ =  for a suitable right hand side matrix R . Similarly,
given P ND= −1 the controller C D NC C= −1  is constructed with the help of
D D N N Rc c+ =  (Kucera, 1979; Kucera, 1991).

The macro returns error messages in the following situations:

• The input arguments are not polynomial objects

• The input matrices have inconsistent dimensions

• The input string is incorrect

Algorithm

Diagnostics



Commands — Online reference

pplace

• The input polynomial matrices are not coprime

stab stabilization

debe deadbeat regulator design

See also
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pplot, pplot3

pplot, pplot3

Polynomial two- or three-dimensional matrix graphs

pplot(P)

pplot(P,n)

pplot(P,'last')

pplot3(P)

pplot3(P,n)

pplot3(P,'last')

The command

pplot(P)

creates a new figure with a 2-dimensional plot of the polynomial matrix P, while

pplot(P,n)

creates a 2-dimensional plot and puts it into an existing figure window with number
n. The command

pplot(P,'last')

Purpose

Syntax

Description
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puts it into the last created or mouse-activated figure window.

The color of each cell corresponds to the degree of the corresponding entry of P.
Empty white places correspond to zero entries. The color map may be changed by
the menu “Color."

The commands

pplot3(…)

create 3-dimensional plots. The height of each bar corresponds to the degree of
the corresponding entry of P. The color of each bar corresponds to the magnitude
of the leading coefficient of the corresponding entry of P. Empty white places
correspond to zero entries. The color map may be changed by the menu “Color.”
The button “Rotate” turns a mouse-based interactive rotation of the plot view on or
off.

The command

P = prand(floor(5*rand(3,3)),5,5,'int')

generates the unattractive polynomial matrix

Polynomial matrix in s: 5-by-5,  degree: 4

P =

  Columns 1 through 2

    -1 - s + s^2             -4 - s - 5s^3 + 5s^4

Example
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     6                       -3 + 4s + s^2 - 2s^3 - 4s^4

     7 - 4s + 4s^2 - 3s^3     4 + 4s - 4s^2 + 3s^3

    -10 + s + 7s^2 + s^4      s + 4s^2 + s^3 + 4s^4

    -3 + s - 3s^2 + 2s^4      6 + 4s - 13s^2 + s^3 + 4s^4

  Columns 3 through 4

    -6 - 4s - 6s^2                 5 - 3s - 9s^2 + 4s^3 +

7s^4

     1                            -9 - 8s + 10s^2 + 13s^4

     5 - 5s + 2s^2                -6 - s - s^2 - 5s^3 -

10s^4

     3 + s + s^2 - 5s^3 - 5s^4     2s - 4s^2 + 4s^3 + s^4

     4s + 4s^2 + 7s^3 + 6s^4       5 - 8s - 5s^2 + 3s^3 -
5s^4

  Column 5

     3 + s - 4s^2 - 4s^3 + 6s^4

    -1 + s + 5s^2 - s^3 - 3s^4

    -5 - 9s^2 + 6s^3 - 3s^4
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     14 + 2s - 7s^2 + 2s^3 + 2s^4

    -3 + 3s + 5s^3 - 7s^4   

The degrees of its entries are

deg(P,'ent')

ans =

     2     4     2     4     4

     0     4     0     4     4

     3     3     2     4     4

     4     4     4     4     4

     4     4     4     4     4

The two-dimensional plot of Fig. 13 is produced by the command

pplot(P)

It confirms that the low-degree entries are all in the upper left half corner.
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Fig. 13. 2-D plot

Typing

pplot3(P)

generates the three-dimensional plot of Fig. 14 that unequivocally singles out the
entry with the largest leading coefficient.
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Fig. 14. 3-D plot

Rotating the plot results in the view of Fig. 15.
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Fig. 15. Rotated 3-D plot

The macros rely on standard Polynomial Toolbox and MATLAB 5 commands.

The macros display error messages if they do not have enough input arguments or
the input is not a polynomial matrix.

pme polynomial matrix editor

Algorithm

Diagnostics

See also
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pprop, symbol, userdata

Display or set the properties of a polynomial object

Return or set the variable symbol of a polynomial object

Set or return the user data of a polynomial object

pprop(P)

pprop(P,value)

pprop(P,value1,value2,...)

sP = symbol(P)

symbol(P,string)

userdata(P,argm)

u = userdata(P)

The command

pprop(P)

displays all the properties of P and their admissible values. The command

pprop(P,value)

Purpose

Syntax

Description



Commands — Online reference
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sets the property of the polynomial matrix P corresponding to value equal to the
value value, while

pprop(P,value1,value2,...)

sets multiple property values of P equal to the values value1, value2, ...

The command

sP = symbol(P)

returns the current value of the variable symbol of the polynomial matrix P, while

symbol(P,string)

sets the variable symbol of P equal to the value string (and returns this value).

The command

userdata(P,argm)

sets the user data of the polynomial object P equal to argm. The function call

u = userdata(P)

returns the current value of the user data of P.

After defining the polynomial matrix P as

P = [1+s 2 3];   

Examples
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the properties of the polynomial matrix P may be viewed by typing

pprop(P)   

 POLYNOMIAL MATRIX

size        1-by-3

degree      1

PROPERTY NAME:    CURRENT VALUE:     AVAILABLE VALUES:

variable symbol   s                 's','p','z^-

1','d','z','q'

user data         []                 arbitrary

We modify both available properties by typing

pprop(P,'z','Redefined matrix')   

The effect may be inspected immediately

pprop(P)   

 POLYNOMIAL MATRIX

size        1-by-3
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degree      1

PROPERTY NAME:    CURRENT VALUE:     AVAILABLE VALUES:

variable symbol   z                 's','p','z^-

1','d','z','q'

user data         Redefined matrix   arbitrary

We may also observe the change when we type

P   

P =

     1 + z     2     3   

The command

symbol(P)   

ans =

z   

confirms once again that P is polynomial in the symbol z. We change the symbol
back to s with the command

symbol(P,'s'); P   
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and indeed

P =

     1 + s     2     3   

Typing

userdata(P)

returns

ans =

Redefined matrix

The macros use standard MATLAB 5 commands.

The macros return error messages if the input is inappropriate.

gprop set or modify the global default properties of polynomial matrices

gensym set the global default variable

Algorithm

Diagnostics

See also
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prand

Generate a polynomial matrix with random coefficients

P = prand(degP,n,m)

P = prand(degP,n)

P = prand(degP)

P = prand

P = prand(degP,n,m,options)

The command

P = prand(degP,n,m)

generates a “random” n m× polynomial matrix P of degree degP with normally
distributed coefficients.

If m is missing then a square n n× matrix is created. If also m is missing then the
sizes of degP are used.

If degP is a matrix of integers then its entries specify the degrees of the
corresponding entries of P. If degP is a column or row vector then its entries
specify the row or column degrees of P, respectively.

Purpose

Syntax

Description



Commands — Online reference

prand

To randomize also the degrees of the entries, rows or columns within the interval
[0, degP] the options 'ent', 'row' or 'col', respectively, may be included.

An input string 'uni' instead of these strings makes P a square n n×  unimodular
matrix such that det(P) = 1.

The option 'sta' makes P a “stable” polynomial matrix. In this case degP
specifies the number of roots. This count includes possible multiplicities.  What
stability means depends on the default global variable — see isstable.

 Any of the syntaxes described may by combined with the string 'int' to produce
“small integer” coefficients.

The command

P = prand(2,2,2)   

results in

P =

    -1.7 + 0.13s + 0.29s^2      -1.1 + 1.2s + 1.2s^2

    -0.038 + 0.33s + 0.17s^2    -0.19 + 0.73s - 0.59s^2   

while

P = prand(2,2,2,'int')

Examples
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produces

P =

    -1 + s + 5s^2     -4s^2

     1 - 7s + 4s^2     8 - 3s + 4s^2   

A random matrix of which the first row has degree 1 and the second has degree 2
follows by the command

P = prand([1;2],2,2)   

P =

    -1.6 - 1.4s                 0.57 - 0.4s

     0.69 + 0.82s + 0.71s^2     1.3 + 0.67s + 1.2s^2   

Typing prand without further argument or prand('int') generates
unpredictable polynomial matrices as intended.

It may be checked that

P = prand(2,3,'int','uni')   

P =

    -2               2 - 2s            1

    -3 + s + s^2     2 - 3s + 2s^2     1 - s
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    -1 - s           1 - 2s            1   

is unimodular by typing

det(P)   

Constant polynomial matrix: 1-by-1

ans =

     1   

The command

gprop s, P = prand(2,3,3,'sta','int')   

produces the polynomial matrix

P =

     9 + 19s + 2s^2    -9s - s^2    -18 - 29s - 3s^2

    -8 - 2s             4 + s       -4 + 3s + s^2

     0                  0            1    

P has two roots

roots(P)   

ans =
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   -9.0000

   -4.0000   

both with with negative real parts. On the other hand

gprop z, P = prand(2,3,3,'sta','int')

generates a matrix

Polynomial matrix in z: 3-by-3,  degree: 2

P =

  Columns 1 through 2

     2.8e+002 + 4z - 2e+002z^2    -28

    -5.6e+002 - 6.3e+002z          2e+002 + 2e+002z

    -1                             0

  Column 3

    -4.5e+002 - 2e+002z + 2e+002z^2

     3.4e+002 + 4.3e+002z

     1   

The two roots
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rts = roots(P), abs(rts)   

rts =

  -0.9800 + 0.1400i

  -0.9800 - 0.1400i

ans =

    0.9899

    0.9899   

both have magnitude less than 1.

The macros mostly use standard MATLAB and Polynomial Toolbox operations.

Random unimodular matrices are generated as the product of a lower triangular
unimodular matrix and an upper triangular unimodular matrix. Each triangular
unimodular matrix has ones on the diagonal and random polynomials in the
nonzero off-diagonal entries.

A random matrix with prescribed roots may be generated as the product USV with
U and V random unimodular and S diagonal with polynomials of degree 1 or 2 on
the diagonal. The roots may easily be randomly placed in the left-half complex
plane with integer real and imaginary parts if desired. First or second-order
polynomials with integral coefficients and roots inside the unit circle follow from

Algorithm
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polynomials with integral coefficients and roots in the left-half plane by the
substitution s z z= − +( ) / ( )1 1 .

An error message follows if any of several inconsistencies is encountered in the
input.

mono create monomial vector or matrix

Diagnostics

See also
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prod, sum, trace

Product or sum of the entries of a polynomial matrix

Trace of a polynomial matrix

q = prod(P[,tol])

q = prod(P,dim[,tol])

q = sum(P[,tol])

q = sum(P,dim[,tol])

t = trace(P[,tol])

If P is a polynomial column or row vector then

q = prod(P)

returns the product of its entries. If P is a matrix then q = prod(P) treats the
columns of P as vectors, returning a row vector of the products of each column.
The command

q = prod(P,dim)

takes the products along the dimension specified by the integer dim.

Purpose

Syntax

Description
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The optional input argument tol specifies the zeroing tolerance. Its default value
is the global zeroing tolerance.

Similarly, if P is a polynomial column or row vector then

q = sum(P)

returns the sum of its entries. If P is a matrix then q = sum(P) treats the columns
of P as vectors, returning a row vector of the sums of each column. The command

q = sum(P,dim)

takes the sums along the dimension specified by the integer dim.

The optional input argument tol specifies the zeroing tolerance. Its default value
is the global zeroing tolerance.

The command

t = trace(P)

computes the sum of the diagonal entries of P with zeroing activated through the
global zeroing variable. The optional input argument tol specifies the zeroing
tolerance.

Let

P = [ 1+s 2*s^2 3+4*s

       5    6    7    ];   

Examples
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Then

prod(P)   

results in

ans =

     5 + 5s     12s^2     21 + 28s   

while

trace(P)   

yields

ans =

     7 + s   

The macros rely on standard MATLAB 5 and Polynomial Toolbox operations.

The macros prod and sum display an error message if an unknown command
option is encountered.

Algorithm

Diagnostics



Commands — Online reference

ptopex

ptopex

Enumeration of extreme polynomials for a polytopic family

[pex1,pex2,...,pexm] = ptopex(p0,p1,p2,...,pn,Qbounds)

EX = ptopex(p0,p1,p2,...,pn,Qbounds)

A polytopic family of polynomials P p q q Q= ∈(., ):l q  (Barmish, 1996) is described
by

p s q p s q p si i
i

l

( , ) ( ) ( )= +
=
∑0

1

where p s p s p sn0 1( ), ( ), , ( )K  are polynomials and q q qi i i∈ − +[ , ] , i = 1, 2, L , l, are
uncertain parameters from a parameter bounding set Q qk= conv{ } ,  which is
generated by its m n= 2  extreme points q q q qn

n= 1 2
1 2g g g, , ,Ke j . We denote the

bounds of Q  by

Q

q q

q q

q qn n

bounds =

L

N

MMMMM

O

Q

PPPPP

− +

− +

− +

1 1

2 2

L L

The command

Purpose

Syntax

Description
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[pex1,pex2,...,pexm] = ptopex(p0,p1,p2,...,pn,Qbounds)

computes the m n= 2  extreme polynomials p s qi( , ) .

If only one output argument is used then the command

EX = ptopex(p0,p1,p2,...,pn,Qbounds)

returns all the extreme polynomials in the polynomial column vector EX.

Extreme polynomials generate the polytopic family so that P p s qi= conv{ }( , ) ,
include its extreme points and may be used for its robust stability analysis.

Let a polytope of polynomials be described by

p s q q q q q s s( , ) = − + + + + +2 5 4 3 21 2 1 2
2b g b g ,

Equivalently,

p s q s s q s q s( , ) = + + + + + − +5 2 2 4 1 32
1 2e j a f a f

and

q q1 21 1≤ ≤, .

To input the data, type

p0 = 5+2*s+s^2, p1 = 2+4*s, p2=-1+3*s, Qbounds = [-1 1;-1

1];   

Example
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The uncertainty bounding set has four extremes q1 1 1= − −,a f , q2 1 1= −,a f ,
q3 11= − ,a f   and q4 11= ,a f . The four associated extreme polynomials (generators)
of the polynomial family are

p s q s s

p s q s s

p s q s s

p s q s s

( , )

( , )

( , )

( , )

1 2

2 2

3 2

4 2

4 5

8 3

2

6 9

= − +
= + +
= + +
= + +

.

They are computed by

EX = ptopex(p0,p1,p2,Qbounds)   

EX =

     4 - 5s + s^2

     8 + 3s + s^2

     2 + s + s^2

     6 + 9s + s^2   

The routine uses standard routines from the Polynomial Toolbox.

The macro returns error messages in the following situations:

• The input arguments are not polynomial objects

Algorithm

Diagnostics
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• The input matrices have inconsistent dimensions

ptopplot plot polytopic value setSee also
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ptopplot

Plot the value set for a polytopic family of uncertain polynomials

ptopplot(p0,p1,p2,...,pn,Qbounds,freq)

ptopplot(p0,p1,p2,...,pn,Qbounds,freq,'new')

A polytopic family of polynomials P p q q Q= ∈(., ):l q  is described by

 p s q p s q p si i
i

l

( , ) ( ) ( )= +
=
∑0

1

where p s p s p sn0 1( ), ( ), , ( )K  are polynomials and q q qi i i∈ − +[ , ]  are uncertain
parameters. The parameter bounding set Q  is a box given by

Q

q q

q q

q qn n

bounds =

L

N

MMMMM

O

Q

PPPPP

− +

− +

− +

1 1

2 2

L L
.

The set Q  is generated by its extreme points q q q qk
n

n= 1 2
1 2sg sg sg, , ,Ke j , where each

sgi  is either – or +, and Q qk= conv{ } .

For a fixed generalized frequency z ∈C , we define the value set p z Q( , )  (Barmish,
1996; Bose and Zeheb, 1986) as the set of all possible complex values that the

Purpose

Syntax

Description
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p z q( , )  assumes when q  ranges over Q . If p z q( , ) is a polytop of polynomials then
the value set p z Q( , )  is a polygon in the complex plane generated by { ( , )}p z qi , that
is,

p z Q p z qi( , ) { ( , )}= conv .

The command

ptopplot(p0,p1,p2,...,pn,Qbounds,freq)

plots the polygonal value set p z Q( , )  for the given fixed complex frequency z  given
by freq. If freq is a vector of frequencies then the command

ptopplot(p0,p1,p2,...,pn,Qbounds,freq)

plots the polygonal value set “in motion.” This may be used a simple graphical
check for robust stability of p s q( , )  based on the Zero Exclusion Condition.

The command

ptopplot(p0,p1,p2,...,pn,Qbounds,freq,'new')

opens a new figure window for the plot leaving existing windows unchanged.

Note: The macro plots polygonal value sets p z Q( , )  of a proper shape for
generalized (possibly complex) frequencies z  given by the input argument freq.
Owing to this feature, it may be used to test robust stability for various stability
regions including the unit disc. For standard (continuous-time) left half-plane



Commands — Online reference

ptopplot

stability, however, one must input a complex freq = =z jω , instead of just a real
ω  such as employed in half-plane stability oriented macros (khplot).

Note: The macro assumes that each uncertain parameter qi  ranges over a
straight-line segment connecting the points qi

−  and qi
+  even if qi  is complex. If a

complex interval [ , ] [ , ]r r j p p− + − ++  is required then it must be described by two
parameters: a real q r rr ∈ − +[ , ]  and a purely imaginary q j p pp ∈ − +[ , ] .

Consider the uncertain polynomial (Barmish 1994, p. 143)

p s q s s s q s s s

q s s s q s s s

( , ) = + + + + + + +

+ − + − − + + + +

3 3 3 1 3 3 2

1 3 2 2

2 3
1

2 3

2
2 3

3
2 3

e j e j
e j e j

with qi ≤ 0 245. . After entering the data

p0 = pol([3 3 3 1],3); p1 = pol([1 3 3 2],3);

p2 = pol([-1 1 -3 -1],3); p3 = pol([2 1 1 2],3);

q = [-0.245 0.245; -0.245 0.245; -0.245 0.245];

we may plot the value set of Fig. 16 for thirty evenly spaced frequencies between
ω = 0  and ω = 15.  by typing

ptopplot(p0,p1,p2,p3,q,j*(0:1.5/30:1.5))

As the family above has a stable member p s( , )0  and the Zero Exclusion Condition
is evidently satisfied the family is robustly stable.

Example 1
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Fig. 16. Value set plot

We check the robust Schur stability a polytopic family of the discrete-time
polynomials described by

p z q z q z q( , ) (0. ) (0. )= + + − +3 25 25

Example 2
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(Barmish, 1994, p. 115) or, equivalently, by

p z q z z q z( , ) . .= − + + + − +0 25 0 5 12 3 2e j e j
where Q = −0 3 0 3. , . . We first input the data

p0 = -0.25+0.5*z^2+z^3, p1 = -1+z^2, Qbounds = [-0.3 0.3]

p0 =

    -0.25 + 0.5z^2 + z^3

p1 =

     -1 + z^2

Qbounds =

   -0.3000    0.3000   

To apply the Zero Exclusion Condition we first identify one stable member. Indeed,
by taking q q= =0 0  we have p z q z z( , ) . .0 3 20 5 0 25= + − , which is Schur stable:

roots(p0)   

ans =

  -0.5000 + 0.5000i

  -0.5000 - 0.5000i
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   0.5000   

Next we sweep z  around the unit circle while plotting the value set p z Q( , ) . In this
particular example the value set is the straight-line segment joining p z( , . )−0 3 and
p z( , . )0 3 . Fig. 17 shows it in motion using 1000 evaluation points evenly spaced
around the unit circle as obtained by the command

ptopplot(p0,p1,Qbounds,exp(j*(0:2*pi/1000:2*pi))

It is clear by inspection that 0 ∉p z Q( , ) for all z . Hence, we conclude that p z Q( , ) is
robustly stable.

Finally, we check the robust Schur stability of the discrete-time interval polynomial

p z q z z z( , ) ,= − + + −LNM
O
QP +

1
3

2
3

17
8

17
8

2 3 4

First we express it in the polytopic form

p z q z z z qz( , ) = − + − +F
HG

I
KJ +

1
3

2
3

17
8

2 3 4 3

with

q ∈L
NM

O
QP0

17
4

, .

Example 3
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Fig. 17. Value set plot for Example 2

Next we enter the data

p0 = pol([-1/3 0 2/3 –17/8 1],4,'z'), p1 = z^3,

p0 =
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    -0.33 + 1.5z^2 - 2.1z^3 + z^4

p1 =

     z^3

Qbounds = [0 17/4]  

Qbounds =

         0    4.2500

Now we plot in Fig. 18 the value set with z sweeping around the unit circle with the
help of the command

ptopplot(p0,p1,Qbounds,exp(j*(0:0.01:1)*2*pi))

We see that the Zero Exclusion Condition is violated and, hence, the interval
polynomial fails to be robustly Schur stable. This observation together with the fact
that both extreme polynomials

[pmin,pmax] = ptopex(p0,p1,Qbounds)   

pmin =

    -0.33 + 1.5z^2 - 2.1z^3 + z^4

pmax =

    -0.33 + 1.5z^2 + 2.1z^3 + z^4   
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Fig. 18. Value set plot for Example 3

isstable(pmin), isstable(pmax)

ans =
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     1

ans =

     1

are Schur stable indicates that Kharitonov-like extreme point results do not hold for
Schur stability of polynomials with degree 4.

The macro first enumerates the extreme polynomials for p z Q( , )  using ptopex.
Then it evaluates each of them at z  via polyval and plots the convex hull of the
resulting values to obtain the value set.

The macro returns error messages in the following situations:

• The input arguments are not polynomial objects

• The input matrices have inconsistent dimensions

• The argument freq is either incorrect or missing.

ptopex extreme polynomials for polytopic polynomial family

khplot plot Kharitonov rectangles

Algorithm

Diagnostics

See also
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pzer

Perform zeroing on a polynomial matrix

PZ = pzer(P)

PZ = pzer(P,ZEROING)

The command

 PZ = pzer(P)

sets the coefficients in P equal to zero whose absolute value is less than the
current value of the global zeroing tolerance. The command

PZ = pzer(P,ZEROING)

uses the value of the argument ZEROING as the local tolerance.

To suppress zeroing globally set the global zeroing tolerance equal to zero using
the command

gprop 0

Typing

P = [ eps*s+1  eps+s ]

results in

Purpose

Syntax

Description

Examples
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P =

     1 + 2.2e-016s     2.2e-016 + s   

In turn, typing

P = pzer(P)   

modifies P to

P =

     1     s   

The macro uses standard MATLAB 5 commands.

The macro issues an error message if it finds too few input arguments.

plus, minus, times arithmetic operations

Algorithm

Diagnostics

See also
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qzord

Ordered QZ transformation

[AA,BB,Q,Z] = qzord(A,B)

[AA,BB,Q,Z] = qzord(A,B,'partial')

[AA,BB,Q,Z] = qzord(A,B,'full')

[AA,BB,Q,Z] = qzord(A,B,'partial',tol)

[AA,BB,Q,Z] = qzord(A,B,'full',tol)

The command

[AA,BB,Q,Z] = qzord(A,B)

produces the ordered QZ transformation of the constant matrices A and B. AA and
BB are upper triangular constant matrices and Q and Z nonsingular unitary
matrices such that QAZ = AA, QBZ = BB. The generalized eigenvalues of the
matrix pair (A, B) are the ratios of the diagonal entries of AA and BB.

If the commands

[AA,BB,Q,Z] = qzord(A,B)

[AA,BB,Q,Z] = qzord(A,B,'partial')

Purpose

Syntax

Description
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are used then the generalized eigenvalues are ordered such that the infinite
generalized eigenvalues come last. If

[AA,BB,Q,Z] = qzord(A,B,'full')

is used then the generalized eigenvalues are ordered according to increasing real
parts with the infinite generalized eigenvalues last.

The optional input argument tol sets the tolerance that is used to determine
whether a generalized value is infinite.

Consider the matrices

A = [ 11    -7     2    12

     6    16     8    -7

     0     0   -15     5

     3    17    -8    -4 ];

B = [ -2    -1    -1     0

     -14    -8     5     0

     -13    -8     3     0

       9     8     7     0 ];  

[AA,BB] = qzord(A,B)   

Examples
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AA =

    6.3213   20.7138    8.4444   -6.3634

   -0.0000    0.8513   -3.0038    0.3346

    0.0000   -0.0000   17.2160   -2.6845

    0.0000   -0.0000         0  -21.3711

BB =

    2.5471   -5.8621   -1.2364   -7.1106

         0  -22.4140    9.1457    6.7722

         0    0.0000   -0.8909   -1.1712

         0    0.0000   -0.0000   -0.0000   

We compute the generalized eigenvalues by typing

d = diag(AA)./diag(BB); d(1:3)   

ans =

    2.4817

   -0.0380

  -19.3241   
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There is a single infinite generalized eigenvalue, which comes last. The remaining
eigenvalues are not ordered, at least not according to increasing real parts. To
order them we use the command

[AA,BB] = qzord(A,B,'full');  

d = diag(AA)./diag(BB); d(1:3)   

ans =

  -19.3241

   -0.0380

    2.4817   

The finite eigenvalues are now ordered according to increasing real part.

First the QZ algorithm is used to transform A and B to upper triangular form AA and
BB (see qz). Adjacent diagonal entries of AA and BB may simultaneously be
transformed using Givens rotations (see cgivens1) from both the left and the right
such that the corresponding generalized eigenvalues are interchanged. By suitable
interchanges partial or full ordering is accomplished.

The macro displays error messages in the following situations:

• The input matrices have incompatible dimensions

• There are too many input arguments

Algorithm

Diagnostics
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• An unknown option is encountered

pencan Kronecker canonical form of a matrix pencil

cgivens1 Givens rotation

See also
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rank

Rank of a polynomial matrix

rank(A[,tol])

rank(A,'fft'[,tol])

rank(A,'syl'[,tol])

The commands

rank(A)

rank(A,'fft')

provide an estimate of the number of linearly independent rows or columns of a
polynomial matrix A by computing the rank of A evaluated at a set of Fourier points.
The numbers

rank(A,tol)

rank(A,'fft',tol)

equal the minimal number of singular values of A evaluated at the set of Fourier
points that are larger than tol. The default value is tol =  max(size(A))
*norm(A)*eps.

The commands

Purpose

Syntax

Description
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rank(A,'syl')

rank(A,'syl',tol)

estimate the rank of the polynomial matrix A by computing ranks of appropriate
Sylvester matrices. This algorithm is based on evaluation of the rank of constant
matrices and therefore the optional input argument tol has the same meaning as
for the standard MATLAB function rank.

The 4 5×  polynomial matrix of degree 4

P = prand(2,4,3)*prand(2,3,5)   

Polynomial matrix in s: 4-by-5,  degree: 4

P =

  Column 1

    -0.25 - 0.16s + 2s^2 - 0.91s^3 + 1.2s^4

    -0.36 - 0.55s + 0.93s^2 - 0.88s^3 - 1.3s^4

     0.11 + 0.95s - 1.1s^2 - 1.2s^3 - 1.2s^4

     0.37 + 0.13s + 1.9s^2 - 1.9s^3 + 0.82s^4

  Column 2

     1.6 - 1.6s - 0.42s^2 - 0.31s^3 + 0.62s^4

Examples
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     1.6 - 0.67s - 4.8s^2 + 1.2s^3 - 0.84s^4

    -0.73 - 2.6s + 0.36s^2 - 1.1s^3 + 0.87s^4

    -0.73 + 1.1s + 2.2s^2 - 0.49s^3 + 0.35s^4

  Column 3

    -1.7 - 0.1s - 0.13s^2 + 0.096s^3 + 1.9s^4

    -1.2 - 0.16s + 0.17s^2 + 1.4s^3 - 1.6s^4

     1.3 + 1.3s + 5.9s^2 - 2.1s^3 + 2.4s^4

    -0.49 - 0.68s + 1.2s^2 - 1.2s^3 + 0.77s^4

  Column 4

     0.05 + 0.25s + 0.64s^2 - 1.4s^3 + 0.41s^4

    -0.22 + s + 1.2s^2 - 0.66s^3 - 1.3s^4

    -0.1 - 0.37s + 1.1s^2 - 2.2s^3 - 0.27s^4

     0.59 - 2.2s + 1.4s^2 - 0.097s^3 + 0.58s^4

  Column 5

    -2.7 + 2s + 1.3s^2 - 0.31s^3 + 0.82s^4

    -2.5 - 0.082s - 2.9s^2 - 3.4s^3 - 0.0042s^4
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     3.4 - 2.9s + 1.7s^2 - 1.3s^3 + 0.14s^4

    -0.012 + 1.3s + 3.5s^2 - 0.099s^3 + 0.18s^4   

should have rank 3. Indeed,

rank(P)   

correctly returns

ans =

     3   

Likewise,

rank(P,'syl')

although it takes longer, returns

ans =

     3   

The FFT algorithm works as follows. Let P be a polynomial matrix of size m n×
and degree d. First the maximal number N d n m= min( , )  of finite roots is computed,
and rounded up to the nearest integral power of 2. Then P is evaluated at the N
Fourier points si = exp( / )i j N2π , i = 0, 1, …, N-1, using the fast radix-2 FFT routine.
This way the set {Yi, Yi = P(si), i = 0, 1, ..., N-1} is obtained. The rank r of P may
be ascertained as

Algorithm
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r
i

= max rank( )Yi

The procedure may be terminated if Yi is of full rank for some i less than N,
concluding that P is of full rank as well. As a result, if P has full rank then just one
rank evaluation suffices as a rule, while for a singular matrix all the N rank
evaluations must be performed to be sure of the rank.

The optional tolerance tol is used for the rank evaluations of the constant
matrices Yi using the standard MATLAB macro rank.

This algorithm is described in Hromcik and Sebek (1998a).

The Sylvester resultant algorithm is as follows. Let cd(i) and rd(i) denote the
column and row degrees of the m n×  matrix P, respectively. Define

d c r= min( , )

where

c n i

r n i
i

i

= + + + −

= + + + −

cd cd cd cd

rd rd rd rd

( ) ( ) ( ) min ( )

( ) ( ) ( ) min ( )

1 2

1 2

L

L

Then it can be shown that

rank min( , )P = rc rr

where if d > 0
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rc

rr

= − −
= ′ − ′ −

rank sylv( , ) rank sylv( , )

rank sylv( , ) rank sylv( , )

A d A d

A d A d

1

1

and if d = 0

rc

rr

=
= ′

rank sylv( , )

rank sylv( , )

A d

A d

This algorithm is described in Henrion and Sebek (1998a).

The macro issues an error message if an unknown command option is
encountered.

issingular test polynomial matrix for singularity

det determinant of a polynomial matrix

Diagnostics

See also
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rat2lmf, rat2rmf, tf2lmf, tf2rmf

rat2lmf, rat2rmf, tf2lmf, tf2rmf

Conversion of a rational or transfer matrix to a left or right polynomial matrix
fraction

[N,D] = rat2lmf(num,den[,tol])

[N,D] = rat2rmf(num,den[,tol])

[N,D] = tf2lmf(num,den[,tol])

[N,D] = tf2rmf(num,den[,tol])

Given two polynomial matrices num and den of the same dimensions that contain
the numerators and denominators of a rational transfer matrix the function

[N,D] = rat2lmf(num,den)

converts the transfer matrix to the left coprime polynomial matrix fraction D N−1 .
The polynomial matrices N and D inherit the indeterminate variable of num and
den.

Given two cell arrays num and den of the same dimensions that contain the
numerators and denominators of a rational transfer matrix in MATLAB format the
function

[N,D] = tf2lmf(num,den)

Purpose

Syntax

Description
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converts the transfer matrix to the left coprime polynomial matrix fraction D N−1 .
The polynomial matrices N and D inherit the default indeterminate variable.

Similarly, the functions

[N,D] = rat2rmf(num,den)

[N,D] = tf2rmf(num,den)

converts the transfer matrix to the right coprime polynomial matrix fraction ND−1.

In all cases a tolerance tol may be specified as an additional input argument. Its
default value is the global zeroing tolerance.

Transfer function models are not recommended. State space and matrix fraction
models are more natural and the conversion from and to transfer function models is
numerically delicate.

Consider the transfer matrix

−
−

− +

+

L

N

MMMM

O

Q

PPPP

5
1

5 62

2

s
s s

s s

First define the matrices that contain the numerator and denominator polynomials
in Polynomial Toolbox format:

num = [    -5

Examples
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        s^2-5*s+6 ];

den = [    s-1

          s^2+s   ];   

A left matrix fraction representation of the transfer matrix follows by typing

[Nl,Dl] = rat2lmf(num,den)

We obtain

Nl =

    -5

     6 - 5s + s^2

Dl =

    -1 + s     0

     0         s + s^2   

A right fraction follows similarly by the command

[Nr,Dr] = rat2rmf(num,den)

Nr =

    -5s - 5s^2
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    -6 + 11s - 6s^2 + s^3

Dr =

    -s + s^3   

To obtain a left matrix fraction the routines lrm and rdiv are employed to bring all
entries of the transfer matrix H on a least common denominator d. As a result H is
of the form

H N do= /

with No  a polynomial matrix. After this the right fraction

N dIo( )−1

is converted to a coprime left fraction using rmf2lmf.

The macros rat2rmf and tf2rmf are the duals of rat2lmf and tf2lmf.

The macros return error messages if

§ The tolerance is invalid

§ The number of input arguments is incorrect

§ The input matrices have incompatible sizes

§ Illegal input for the denominator is encountered

Algorithm

Diagnostics
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lmf2rat, rmf2rat
lmf2tf, rmf2tf

conversion to a left or right polynomial matrix fraction to a
rational or transfer matrix

tf create a Control System Toolbox LTI object in transfer
function format

See also
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real

Real part of a polynomial matrix

X = real(Z)

For a polynomial matrix Z, the command X = real(Z) returns the polynomial
matrix X whose coefficients are the real parts of the corresponding coefficients of
Z.

If

P = [(1+i)*s (1-i)*s+s^2];   

then

real(P)   

results in

ans =

     s     s + s^2   

The macro real uses standard MATLAB operations.

The macro displays no error messages.

Purpose

Syntax

Description

Examples

Algorithm

Diagnostics
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imag imaginary part of a polynomial matrix

ctranspose (') complex conjugate transpose of a polynomial matrix

conj conjugate of a polynomial matrix

See also
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reverse

Reverse the variable of a polynomial matrix fraction

[N,D] = reverse(P,Q[,tol])

[N,D] = reverse(P,Q,'l'[,tol])

[N,D] = reverse(P,Q,'r'[,tol])

Given a square nonsingular polynomial matrix Q and a polynomial matrix P with the
same number of rows the commands

[N,D] = reverse(P,Q)

[N,D] = reverse(P,Q,'l')

compute matrices N and D such that

D s N s Q s P s− −=1 1 1 1( ) ( ) ( / ) ( / )

If P and Q are left coprime then so are N and D. The command

[N,D] = reverse(P,Q,'r')

computes the matrices N and D such that

N s D s P s Q s( ) ( ) ( / ) ( / )− −=1 11 1

Purpose

Syntax

Description
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The commands also work for other variables than s. N and D inherit the variables
of P and Q.

The optional input argument tol specifies a tolerance. Its default value is the
global zeroing tolerance.

The command may be used to convert transfer matrices in the forward shift
operator z to transfer matrices in the backward shift operator z−1, and vice-versa.
Consider by way of example the polynomials

P = 2+3*z; Q = 4+z^2;   

that define the transfer function

H z
P z
Q z

z

z
( )

( )
( )

= =
+

+

2 3

4 2

Then

[N,D] = reverse(P,Q);

N.var = 'z^-1', D.var = 'z^-1'   

produces

N =

     3z^-1 + 2z^-2

D =

Examples
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     1 + 4z^-2   

These polynomials define the transfer function

H z
N z

D z

z z

z
( )

( )

( )
−

−

−

− −

−= =
+

+
1

1

1

1 2

2
3 2

1 4

As another application, suppose that we wish to determine the number of poles
and zeros that the unimodular polynomial matrix

U s
s

s
( ) =

− +
L
NM

O
QP

1

1 1

has at infinity. To this end we determine a coprime factorization of U(1/s) and
determine how many poles and zeros this fraction has at 0. Writing

U s Q s P s Q s I P s U s( ) ( ) ( ), ( ) , ( ) ( )= = =−1

we may compute the desired fraction

U s D s N s( / ) ( ) ( )1 1= −

according to

U = [s 1; -1+s 1];

[N,D] = reverse(eye(2),U)   

N =
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     0     s

     1    -1

D =

     1 - s     s

     1         0   

Inspection shows that the numerator polynomial N has one root at 0, so that U has
exactly one zero at infinity. Also the denominator D has a root at 0. Hence, U has
exactly one pole at infinity.

Given the left fraction Q s P s−1( ) ( )  the polynomial matrix [Q P] is first unimodularly
transformed from the left to make it row reduced. After replacing s with 1/s in the
row reduced matrix that is obtained this way each row is multiplied by the smallest
power of s needed to make the row polynomial. The result is partitioned as [D N].

The routine displays error messages under the following circumstances:

§ There are not enough input arguments

§ The denominator matrix is not square

§ An unknown command option is encountered

§ The numerator and denominator sizes do not match

Algorithm

Diagnostics
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A warning follows if

§ The denominator matrix is singular to working precision

§ The input matrices have inconsistent variables

lmf2ss, rmf2ss conversion of left or right matrix fraction
representation to (generalized) state space
representation

lmf2rmf, rmf2lmf conversion of left matrix fraction representation to
right matrix fraction and vice-versa

See also
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roots

Roots of a polynomial matrix

rts = roots(P[,tol])

rts = roots(P,'det'[,tol])

rts = roots(P,'eig'[,tol])

rts = roots(P,'all'[,tol])

rts = roots(P,'det','all'[,tol])

rts = roots(P,'eig','all'[,tol])

The command

rts = roots(P)

computes the finite roots of a polynomial matrix P, that is, those complex values of
s for which P(s) loses rank.

If P is square nonsingular then the commands

rts = roots(P,'det')

rts = roots(P,'eig')

Purpose

Syntax

Description
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allow the user to specify the algorithm that is used. With the option 'det' the roots
are computed as the roots of determinant of P. This is the default method. With the
option 'eig' the roots are computed as the generalized eigenvalues of the block
companion matrix pair associated with P.  

With the option 'all' the infinite roots of P are returned as well. If the option
'eig' is used then all computed eigenvalues are returned without filtering out the
eigenvalues computed as Inf, NaN or a large number. Otherwise the number of
infinite eigenvalues is computed as the number of roots at 0 of P(1/s).

The optional input parameter tol is used for rank testing. Also, any root whose
magnitude is greater than 1/tol is taken to be infinite. The default value for tol is
the global zeroing tolerance.

The command

P = prand(3,2,2,'sta','int')   

generates the stable 2 2×  polynomial matrix P with 3 roots

P =

    -5 - 6s - s^2      -22 + 6s + s^2

    -1.4e+002 - 27s     1.4e+002 + 28s   

Indeed,

roots(P)   

Examples



Commands — Online reference

roots

returns

ans =

  -1.0000 +27.0000i

  -1.0000 -27.0000i

  -5.0000   

The command

roots(P,'eig','all')   

returns

ans =

      NaN -    NaNi

  -1.0000 -27.0000i

  -1.0000 +27.0000i

  -5.0000 + 0.0000i   

while by typing

roots(P,'all')   

we find that the matrix actually has no roots at infinity because it is row reduced:
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ans =

  -1.0000 +27.0000i

  -1.0000 -27.0000i

  -5.0000   

The polynomial matrix

P s

s

s

s

( ) =
L

N
MMM

O

Q
PPP

1 1 1 1

1 1 1 1

1 1 1 1

obviously has normal rank 2 but rank 1 at s = 1. Indeed, typing

P = [ s  1  1  1  1

      1  s  1  1  1

      1  s  1  1  1 ];

roots(P)   

confirms that the matrix has a root at s = 1:

ans =

    1.0000   



Commands — Online reference

roots

The command

U = prand(2,2,2,'uni')   

generates the unimodular matrix

U =

     2.1 + 0.37s - 0.23s^2     1.3 - 0.4s

     0.86 + 0.57s              1   

The command

roots(U,'all')   

reveals that U has two roots at infinity:

ans =

   Inf

   Inf   

but of course no finite roots.

If the 'det' option is used then the roots are computed as the roots of det(P).

If the 'eig' option is used then the roots are computed as the generalized
eigenvalues of the companion matrix pair associated with P (see compan).

Algorithm
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If the matrix is rectangular or singular then the algorithm proceeds as follows. If P
has size n m×  and rank r then its roots are also roots of

d s r n P s m r( ) det( ( , ) ( ) ( , ))= rand rand

where rand(i, j) is an i j×  random constant matrix. By checking which of the roots
of d are also roots of another instance of d the roots of P are identified.

If the option 'all' is used then except if the option 'eig ' is also used first a
coprime factorization D s N s P s− =1 1( ) ( ) ( / )  is found with the help of the routine
reverse. The number of zeros of N is then computed by checking how many
zeros det( ( , ) ( ) ( , ))rand randr n N s m r  has at 0.

The macro issues an error message if an unknown command option is
encountered.

det determinant of a polynomial matrix

rank rank of a polynomial matrix

Diagnostics

See also
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rot90

Rotate a polynomial matrix  by 90°

B = rot90(A)

B = rot90(A,k) 

The command

B = rot90(A)

rotates the matrix A counter-clockwise by 90 degrees. The command

B = rot90(A,k)

rotates the matrix A counter-clockwise by k × 90  degrees, where k is an integer.

The commands

P =[ 1+s    2*s^2

     -2    3+4*s^3

      5     6+7*s  ];

Q = rot90(P)   

produce the response

Purpose

Syntax

Description

Examples
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 Q =

     2s^2      3 + 4s^3     6 + 7s

     1 + s    -2            5   

while

Q = rot90(P,2)

results in

 Q =

     6 + 7s       5

     3 + 4s^3    -2

     2s^2         1 + s   

The routine uses standard routines from the Polynomial Toolbox.

The macro displays error messages if it has too many input or output arguments, or
if k is not a scalar.

fliplr flip a polynomial matrix left-right

flipud flip a polynomial matrix up-down

Algorithm

Diagnostics

See also
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schurst

Ordered Schur decomposition

[S,U,ind] = schurst(C)

[S,U,ind] = schurst(C,tol)

The command

[S,U,ind] = schurst(C)

computes the ordered complex Schur decomposition C USU= ′  of the constant
matrix C.

The constant matrix U is unitary (UU' = I) and S is upper triangular. The
eigenvalues of C with negative real part appear first along the diagonal of S.

The vector ind contains the corresponding column indices of U so that the
columns of U(:,ind) span the maximal stable invariant subspace of C.

An optional tolerance argument tol may be specified. It is used to determine the
sign of the diagonal elements.

Consider the constant matrix

C = [ 4  -3  11

     -1   1   5

Purpose

Syntax

Description

Examples
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      0   0  -4 ];   

The command line

[S,U,ind] = schurst(C)   

results in

S =

   -4.0000    6.2685   10.4206

         0    4.7913    1.4547

    0.0000   -0.0000    0.2087

U =

    0.7433    0.6576    0.1231

    0.5415   -0.6994    0.4665

   -0.3929    0.2801    0.8759

ind =

     1

     0

     0   
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Hence, the maximal stable invariant subspace of C is spanned by the columns of

U(:,ind)   

ans =

    0.7433

    0.5415

   -0.3929   

First the complex Schur decomposition of C is computed with the MATLAB standard
functions schur and rsf2csf. After this the diagonal elements of S are sorted by
application of successive Givens rotations on S and U (Golub and Van Loan,
1996). If the tolerance tol is not specified its value is taken as
10*eps*max(abs(diag(T))), where T is the (not necessarily ordered) Schur form of
C as returned by schur.

The macro returns an error message if the input matrix is not square.

qzord ordered QZ decomposition

Algorithm

Diagnostics

See also
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spf, spcof

spf, spcof

Polynomial spectral factorization and co-factorization

[A,J] = spf(B[,tol])

[A,J] = spf(B,'ext'[,tol])

[A,J] = spf(B,'are'[,tol])

[A,J] = spf(B,'ext','nnc'[,tol])

[A,J] = spf(B,'are','nnc'[,tol])

A = spf(B,'syl'[,tol])

A = spf(B,'red'[,tol])

[A,J] = spcof(B[,tol])

All options of spcof follow those of spf

If B is a continuous-time para-Hermitian polynomial matrix, that is, B is a square
polynomial matrix in the variable s (or p) such that

B s B sT( ) ( )= −

then the command

Purpose

Syntax

Description
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[A,J] = spf(B)

determines a stable square polynomial matrix A (stable in the continuous-time
sense — see isstable) and a signature matrix J such that

B s A s JA sT( ) ( ) ( )= −

The signature matrix J is diagonal of the form

J = − − −diag( , , , , , , , )1 1 1 1 1 1L L

If B is diagonally reduced then the column degrees of the spectral factor A equal
the half diagonal degrees of B.

A tolerance tol may be specified as an additional input argument. Its default value
is the global zeroing tolerance.

The command

[A,J] = spf(B,'ext')

performs factorization with factor extraction by interpolation. This is the default
method. A tolerance of tol*norm(C,1) is used for ordering the complex Schur
decomposition of the companion matrix C corresponding to B.

The command

[A,J] = spf(B,'are')
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uses an algorithm based on a state space solution that involves solving an
algebraic      Riccati equation. The tolerance tol is used in the macro axb for
recovering the spectral factor.

The commands

[A,J] = spf(B,'ext','nnc')

[A,J] = spf(B,'are','nnc')

perform a “nearly non-canonical factorization,” that is, the factorization takes the
form

B s A s J A sT( ) ( ) ( )= − −1

J is diagonal with the diagonal entries arranged according to decreasing value. If B
does not have a canonical factorization then both the spectral factor A and the
matrix J are singular, and the spectral factorization should be interpreted as the
identity

A s B s A s JT( ) ( ) ( )− − =1

If B is positive-definite on the imaginary axis then the commands

A = spf(B,'syl')

A = spf(B,'red')
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implement a Newton-Raphson iterative scheme involving the corresponding
implementation of the function axxab. The signature matrix in this case is the
identity matrix. The iterative process is terminated when norm(A'*A-B) is less than
tol*norm(B)*100. The tolerance tol is also used in the macro axxab.

In the discrete-time case, that is, if the matrix B is a square polynomial matrix in the
variable z (or q, d or z−1), then the matrix B is para-Hermitian if

B z B zT( ) ( / )= 1

In this case B is not a polynomial matrix but is of the form

B z B z B z B z B B z B zd
T d

d
T d T

d
d( ) = + + + + + + +−

−
− + −

1
1

1
1

0 1L L

B needs to be to be provided to the macro spf in the polynomial form

B z z B zd( ) : ( )=

The degree offset d is evaluated upon cancelation of the leading and trailing zero
matrix coefficients.

In the discrete-time only factorizations are performed where B is positive-definite
on the unit circle so that the signature matrix  J is the unit matrix. In this case the
command

A = spf(B)
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determines a polynomial matrix A such that A is stable (in the discrete-time sense
— see isstable) and

B z A z A zT( ) ( / ) ( )= 1

The algorithm uses a Newton-Raphson iterative scheme. The solution has its
constant coefficient matrix A(0) upper triangular with positive diagonal entries. In
the form

A = spf(B,'syl')

the macro is based on a Sylvester matrix algorithm that in turn relies on the macro
axxab. This is the default method. In the form

A = spf(B,'red')

the solution is based on polynomial reductions. The iterative scheme is stopped
when norm(A'*A-B) is less than tol*norm(B)*100. The tolerance tol is also
used in the macro axxab.

If B is a constant symmetric matrix then A is also constant and is obtained together
with J from the Schur decomposition of B.

The macro spcof implements spectral co-factorization, that is, given a continuous-
time para-Hermitian matrix B the command

[A,J] = spcof(B)
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computes a stable square polynomial matrix A (the spectral co-factor) and a
signature matrix J such that

B s A s JA sT( ) ( ) ( )= −

The options of spcof follow those of spf with obvious modifications where
needed.

Let

B = [ 1-4*s^2   2-4*s     0

       2+4*s   8-4*s^2  -1-2*s

         0     -1+2*s   1-4*s^2 ];   

Its spectral factorization follows from

[A,J] = spf(B)   

as

A =

     1 + 2s     2            0

     0          1.7 + 2s     0

     0         -1            1 + 2s

J =

Examples
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     1     0     0

     0     1     0

     0     0     1   

Next consider

B = [ -s^2  -1-s

      -1+s   -3   ];   

Its spectral factorization follows as

[A,J] = spf(B)   

A =

    -0.67 - 1.1s     -0.26

    -0.67 + 0.41s    -1.8

J =

     1     0

     0    -1   

The next example

B = [   1     0.5+s^2
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      0.5+s^2  1+s^4  ];   

involves a matrix that is not diagonally reduced. The diagonal leading coefficient
matrix

lcoef(B,'dia')   

ans =

     1     1

     1     1   

is obviously singular. We obtain the spectral factorization

 [A,J] = spf(B)   

A =

     1     0.5 + s^2

     0     0.87 + s

J =

     1     0

     0     1   

Next, consider the para-Hermitian matrix
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B s
s

s s
( )

. .

. . .
=

− +
− − +
L
NM

O
QP

ε 0 5 0 5

0 5 0 5 0 75 2

For ε = 0  the spectral factorization of B is noncanonical. We study the spectral
factorization of

B = [     1e-6     -0.5+0.5*s

      -0.5-0.5*s     0.75+s^2  ];   

The command

[A,J] = spf(B)   

results in

Warning: SPF: Factorization close to noncanonical.

Consider nearly non-canonical factorization.

A =

    -0.42     4.2e+005 - 0.17s

     0.42    -4.2e+005 - s

J =

     1     0

     0    -1   
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Following the advice we now try

[A,J] = spf(B,'nnc')   

This yields

A =

     1.4e-006    -0.71 + 0.71s

     0            0.71 + 0.71s

J =

  1.0e-005 *

    0.2000         0

         0   -0.2000   

Note that the large numbers have disappeared but that both A and J are near-
singular. Also note that the co-factorization of this same matrix B

[C,J] = spcof(B)   

is perfectly well-behaved:

C =

    -0.42            -0.42
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     0.91 + 0.17s    -0.28 - s

J =

     1     0

     0    -1   

We conclude with a discrete-time example where

B z
z z

( ) = + +L
NMM

O
QPP

−6 1

1 2

1

We need to present the matrix to spf as

B = [ z^2+6*z+1   z

         z       2*z ];   

The spectral factorization command

A=spf(B)   

returns

A =

     0.41 + 2.4z     0.41z

    -0.13            1.4z
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If in the continuous-time case the matrix is not diagonally reduced then it is first
made diagonally reduced using diagred.

The “interpolation” algorithm (option 'int', the default method) relies on spectral
factor extraction as described in Algorithm 7.1 of Kwakernaak and Sebek (1994).
The “Riccati” algorithm (option 'are') is based on Algorithm 8.1–2. The 'nnc'
variant is described in Section IX of this same paper.

The Raphson-Newton scheme for positive-definite factorizations follows Jezek and
Kucera (1985), where also the polynomial reduction algorithm (option 'red') is
described.

The macro issues an error message under the following conditions:

• Invalid Not-a-Number or Inf entry are found in the input matrix

• The input matrix is not square, not para-Hermitian or singular

• An invalid option or input argument is encountered

• The input matrix is not positive-definite on the imaginary axis or on the unit
circle as needed

• The factorization fails in any of several ways

plqg polynomial solution of the LQG problem

mixeds solution of the mixed sensitivity problem

Algorithm

Diagnostics

See also
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Polynomial solution of SISO LQG problems

[y,x,regpoles,obspoles] = splqg(d,n,p,q,rho,mu)

The function call

[y,x,regpoles,obspoles] = splqg(d,n,p,q,rho,mu)

results in the solution of the SISO LQG problem defined by

• Response of the measured output to the control input:

y P s u P s
n s
d s

= =( ) , ( )
( )
( )

• Response of the controlled output to the control input:

z Q s u Q s
p s
d s

= =( ) , ( )
( )
( )

• Response of the measured output to the disturbance input:

y R s v R s
q s
d s

= =( ) , ( )
( )
( )

In state space form

Purpose

Syntax

Description
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& ( ) ( )

( ) ( )

( ) ( )

x Ax Bu Gv P s C sI A B

z Dx Q s D sI A B

y Cx w R s C sI A G

= + + = −
= = −
= + = −

−

−

−

1

1

1

The scalar white state noise v has intensity 1, and the white measurement noise w
has intensity µ. The compensator C(s) = y(s)/x(s) minimizes the steady-state value
of

E z t u t2 2( ) ( )+ ρ{ }
The output argument regpoles contains the regulator poles and obspoles
contains the observer poles. Together the regulator and observer poles are the
closed-loop poles.

Consider the LQG problem for the plant with transfer function

P s
s s s s

s s s s s
( )

( . . . . )

( . . . . )
=

+ + + +

+ + + +

−10 016 10 0088 0 4802 9 0072

0 08 2 5022 0 06002 0 56295

4 4 3 2

2 4 3 2

This is a scaled version of a mechanical positioning system discussed by Dorf
(1989, pp. 544–546). The definition of the LQG problem is completed by choosing
Q = R = P so that p = q = n. Furthermore, we let ρ = 1 and µ = −10 6 .

n = 1e-4*(s^4+0.16*s^3+10.0088*s^2+0.4802*s+9.0072);

d = s^2*(s^4+0.08*s^3+2.5022*s^2+0.06002*s+0.56295);

Examples
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p = n; q = n; rho = 1; mu = 1e-6;  

We can now compute the optimal compensator:

[y,x,regpoles,obspoles] = splqg(d,n,p,q,rho,mu)   

MATLAB returns

y =

     0.9 + 34s + 7.5s^2 + 1.5e+002s^3 + 6.4s^4 + 61s^5

x =

     1 + 2.7s + 4.8s^2 + 5.5s^3 + 4.4s^4 + 1.9s^5 + s^6

regpoles =

  -0.0300 + 1.5000i

  -0.0300 - 1.5000i

  -0.0101 + 0.5000i

  -0.0101 - 0.5000i

  -0.0284 + 0.0282i

  -0.0284 - 0.0282i

obspoles =
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  -0.0692 + 1.5048i

  -0.0692 - 1.5048i

  -0.6931 + 0.3992i

  -0.6931 - 0.3992i

  -0.1734 + 0.7684i

  -0.1734 - 0.7684i   

The regulator characteristic polynomial φ r  and the observer characteristic
polynomial φo  are found by two polynomial spectral factorizations from

φ φ
ρ

φ φ
µ

r r

o o

d d p p

d d q q

∗ ∗ ∗

∗ ∗ ∗

= +

= +

1

1

The closed-loop characteristic polynomial may now be obtained as φ φ φ= r o . The
compensator C = y/x follows by solving

φ = +dx ny

for x and y such that y/x is proper.

The macro displays error messages in the following situations:

• n/d is not proper

Algorithm

Diagnostics
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• p/d is not proper

• q/d is not proper

plqg solution of MIMO LQG problems

mixeds solution of the mixed sensitivity problem for SISO systems

See also
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Create state space models or convert LTI model to state space form

sys = ss(N,D)

sys = ss(N,D,'l')

sys = ss(N,D,'r')

sys = ss(N,D,T[,tol])

sys = ss(N,D,'l',T[,tol])

sys = ss(N,D,'r',T[,tol])

The command ss is a function from the MATLAB Control System Toolbox that
creates state space system objects, or converts other LTI objects to state space
form. A system is in state space form if it is described by equations of the type

&x ax bu

y cx du

= +
= +

with a, b, c, and d constant matrices. Polynomial matrices d are not supported in
Control System Toolbox state space objects.

Purpose

Syntax

Description
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The function ss has been overloaded so that in addition to its Control System
Toolbox functionality it converts systems represented in left or right polynomial
matrix fraction form to a Control System Toolbox LTI object in state space form.

Let D be a square nonsingular row reduced polynomial matrix and N a polynomial
matrix with the same number of rows as D such that

H D N= −1

is proper. Then the commands

sys = ss(N,D)

sys = ss(N,D,'l')

convert the system with transfer matrix H to a Control System Toolbox LTI object in
state space form.

If N and D are polynomial matrices in s or p then a continuous-time LTI object is
created. If they are matrices in z, q, z^-1 or d then a discrete-time object with
sampling time T = 1 is created. In the latter case the commands

sys = ss(N,D,T)

sys = ss(N,D,'l',T)

with T a real number, create a discrete-time system with sampling time T. If T = 0
then the object is taken to be a continuous-time system.
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If the option 'l' is replaced with 'r' then N and D define the system whose
transfer matrix is the right fraction

H ND= −1

D needs to be square column reduced with the same number of columns as N, and
H needs to be proper.

The optional input parameter tol defines a tolerance that is used in the conversion
of the matrix fraction to state space form. Note that this parameter may only be
included if also the input parameter T is included.

The function ss only works if the Control System Toolbox is included in the MATLAB

path.

Later versions of the Polynomial Toolbox will support a polynomial matrix fraction
LTI object.

If

D = [  2   1+s

      s^2   3  ];

N = [ 1

      1 ];   

then typing

Examples
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sys = ss(N,D)   

results in

 a =

                        x1           x2           x3

           x1           -1           -2            0

           x2            0            0            1

           x3           -3            0            0

 b =

                        u1

           x1            1

           x2            0

           x3            1

 c =

                        x1           x2           x3

           y1            0            1            0

           y2            1            0            0
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 d =

                        u1

           y1            0

           y2            0

 Continuous-time system.   

If

N = zi; D = 1;   

then MATLAB supplies this result

sys = ss(N,D)   

a =

                        x1

           x1            0

b =

                        u1

           x1            1

c =
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                        x1

           y1            1

d =

                        u1

           y1            0

Sampling time: 1

Discrete-time system.   

The function calls lmf2ss or rmf2ss.

The function returns an error message in the following circumstances:

§ The Control System Toolbox is not included in the MATLAB path

§ N and D are polynomial matrices in different variables

§ The third or fourth input argument are incorrect

§ The matrix fraction defined by N and D is not proper.

lti2lmf, lti2rmf conversion of a state space LTI object  to a left or right
matrix fraction model

tf creation of a transfer function LTI object or conversion to a
transfer function model

Algorithm

Diagnostics

See also
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zpk creation of a zero-pole-gain LTI object or conversion to a
zero-pole-gain model

lmf2ss, rmf2ss
ss2lmf, ss2rmf

conversion from a left or right polynomial matrix fraction
representation to a state space model, and vice-versa
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ss2dss

Conversion of state space to descriptor representation

[a,b,c,d,e] = ss2dss(A,B,C,D)

[a,b,c,d,e] = ss2dss(A,B,C,D,tol)

The commands

[a,b,c,d,e] = ss2dss(A,B,C,D)

[a,b,c,d,e] = ss2dss(A,B,C,D,tol)

with D a constant matrix or a polynomial matrix in s, convert the state space
system

&

( )

x Ax Bu

y Cx D s u

= +
= +

with s the derivative operator given by su(t) = du(t)/dt, to the descriptor system

e a bu

y c du

&ξ ξ

ξ

= +

= +

The systems are equivalent in the sense that

Purpose

Syntax

Description
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C sI A B D s c se a b d( ) ( ) ( )− + = − +− −1 1

The d matrix of the descriptor system equals the constant term of the polynomial
matrix D.

If D is a polynomial matrix in p then the system is also taken to be a continuous-
time system. If D is a polynomial in z or q then the input defines defines the
discrete-time system

x t Ax t Bu t

y t Cx t D z u t

( ) ( ) ( )

( ) ( ) ( ) ( )

+ = +

= +

1

with z the time-shift operator given by zu(t) = u(t+1). In this case the output
parameters define the discrete-time descriptor system

e t a t bu t

y t c t du t

ξ ξ

ξ

( ) ( ) ( )

( ) ( ) ( )

+ = +

= +

1

If D is polynomial in z^-1 or d then an error message follows.

The optional parameter tol is a tolerance that is used in the row reduction needed
to find a minimal descriptor representation for the polynomial part of the system. Its
default value is eps*10^2.

We consider the degenerate state space system defined by

A = []; B = ones(0,1); C = ones(1,0); D = s^2;   

Example
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Inspection shows that this system has the purely polynomial transfer function

H s s( ) = 2

Application of

[a,b,c,d,e] = ss2dss(A,B,C,D)   

yields

a =

     1     0     0

     0     1     0

     0     0     1

b =

     0

     0

     1

c =

    -1     0     0

d =
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     0

e =

     0     1     0

     0     0     1

     0     0     0   

Denoting

D s D D s D s D s

D s

p
p( )

$ ( )

= + + +0 1 2
2 L

1 24444 34444

the state space system system may be represented as the parallel connection of a
system with the proper state space representation

&x Ax Bu

y Cx D u

= +
= + 0

and a system whose transfer function is the polynomial matrix $ ( )D s . A descriptor
representation of this second system is obtained by determining a minimal state
representation of the system with the (strictly proper) transfer matrix $ ( / ) /D s s1 . If

$ ( / )
( )

D s
s

c sI a b
1 1= − −

Algorithm
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then it is easy to see that $ ( )D s  has the minimal descriptor representation

$ ( ) ( )D s c I sa b= − −1

To find a minimal realization of $ ( / ) /D s s1  we define P s sD s( ) $ ( )=  and determine a
unimodular transformation U such that

U I P s d s n s( ) ( ) ( )=

is row reduced. Note that if P is row reduced then U = I. It easily follows that

P s d s n s( ) ( ) ( )= −1

We next multiply each row of

d
s

n
s

( ) ( )
1 1L

NM
O
QP

by the smallest power of s needed to make the row polynomial. Denoting the result
as

$( ) $( )d s n s

we have

1 1 1 1

s
D

s
P

s
d s n s$ ( ) ( ) $ ( )$( )= = −
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with $d  and $n  left coprime. After a further unimodular transformation to make $d
row reduced we may use lmf2ss to construct a minimal state space
representation.

The macro issues an error message under the following conditions.

• The value of the tolerance is invalid

• The number of input arguments is incorrect

• The input matrices A, B and C are not constant matrices

• The fourth argument has an invalid format or variable symbol

• The input matrices have incompatible sizes

dss2ss conversion of descriptor representation to state
representation

dss2lmf, dss2rmf
lmf2dss, rmf2dss

conversion from descriptor form to left or right polynomial
matrix fraction form and vice-versa

dss, ss create descriptor state space and state space models or
convert LTI model to descriptor state space or state space
form

Diagnostics

See also
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ss2lmf, ss2rmf

Conversion of state space representation to left or right matrix fraction
representation

[N,D] = ss2lmf(a,b,c)

[N,D] = ss2lmf(a,b,c,d)

[N,D] = ss2lmf(a,b,c,d,tol)

[N,D] = ss2rmf(a,b,c)

[N,D] = ss2rmf(a,b,c,d)

[N,D] = ss2rmf(a,b,c,d,tol)

The input arguments of the commands

[N,D] = ss2lmf(a,b,c)

[N,D] = ss2lmf(a,b,c,d)

[N,D] = ss2lmf(a,b,c,d,tol)

with d a constant matrix or a polynomial in s, define the (generalized) state space
system

Purpose

Syntax

Description
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&

( )

x ax bu

y cx d s u

= +
= +

The output arguments represent the transfer matrix

H s c sI a b d s( ) ( ) ( )= − +−1

of the system as the left coprime polynomial matrix fraction

H s D s N s( ) ( ) ( )= −1

so that the denominator matrix D is row reduced .

The commands

[N,D] = ss2rmf(a,b,c)

[N,D] = ss2rmf(a,b,c,d)

[N,D] = ss2rmf(a,b,c,d,tol)

produce the right polynomial matrix fraction

H s N s D s( ) ( ) ( )= −1

so that D is column reduced.

If the input parameter d is omitted then it is set equal to the zero matrix.
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The optional input parameter tol is a tolerance that is used in determining the
observability or controllability indexes, that is, the row or column degrees of D. Its
default value is eps*1e2.

The continuous-time interpretation of the input arguments applies if the input
argument d is a polynomial matrix in s or p. The output arguments N and D are
returned in the same variable.

If the input parameter d is a polynomial matrix in z or q then the input parameters
are taken to define the discrete-time system

x t ax t bu t

y t cx t d z u t

( ) ( ) ( )

( ) ( ) ( ) ( )

+ = +
= +

1

with z the time-shift operator given by zu(t) = u(t+1). The output parameters then
are polynomial matrices in z or q representing the discrete-time system with
transfer matrix H D N= −1  or H ND= −1 .

If d is a polynomial matrix in z^-1 or d then an error message occurs.

If d is a constant matrix then the input matrices are taken to define a continuous-
time system if the default indeterminate variable is s or p, and a discrete-time
system if the default variable is z, q, z^-1 or d.  The output matrices N and D are
returned as polynomial matrices in the default variable.

We consider the state space system defined by

a = [ 0  1  0  0

Examples
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      0  0  0  0

      0  0 -2  0

      0  0  0  0 ];

b = [ 0  0

      1  0

      0  1

      0  0 ];

c = [ 1  0  1  0

      0  0  1  1 ];

d = [ 0  0

      0  0 ];   

The corresponding right matrix fraction follows as

[N,D] = ss2rmf(a,b,c,d)   

Constant polynomial matrix: 2-by-2

N =

     1    -1
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     0    -1

D =

     s^2     0

     0      -2 - s   

Modification of d in

d = [ 1+s 0

       0  0 ];

results in

[N,D] = ss2rmf(a,b,c,d)

N =

     1 + s^2 + s^3    -1

     0                -1

D =

     s^2     0

     0      -2 - s   

If we let
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d = [ 1+z 0

       0  0 ];

then

[N,D] = ss2lmf(a,b,c,d)

produces the left matrix fraction defined by

N =

     1 + z^2 + z^3     0

     0                -1

D =

     z^2    -z^2

     0      -2 - z   

Next consider the state system defined by

a = 1; b = 1; c = 1;   

Then

gprop s, [N,D] = ss2lmf(a,b,c)   

yields
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Constant polynomial matrix: 1-by-1

N =

     1

D =

    -1 + s   

while

gprop z^-1, [N,D] = ss2lmf(a,b,c)

results in

N =

     z^-1

D =

     1 - z^-1   

The algorithm for ss2lmf is described in Strijbos (1995, 1996). Using a sequence
of Householder transformations the matrix pair (a, b) is brought into block
Hessenberg form and the noncontrollable part is removed (see bhf). Next the
macro bhf is used on the new matrix pair (a', c') to remove the nonobservable
part. From the result the left coprime matrix fraction

Algorithm
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c sI a b D s N so( ) ( ) ( )− =− −1 1

is constructed (see bhf2rmf). N follows from

N s N s D s d so( ) ( ) ( ) ( )= +

This algorithm also applies if the variable is p, z or q. If the indeterminate variable is
z^-1 or d then a final conversion of the fraction with the help of reverse is
needed.

The algorithm for ss2rmf is dual to that of ss2lmf.

Error messages are issued under the following conditions:

§ The input matrices a, b and c are not constant matrices

§ The input matrices have incompatible sizes

lmf2ss, rmf2ss conversion of to a left or right polynomial matrix
fraction to state space representation

dss2rmf, rmf2dss
dss2lmf, lmf2dss

conversion from descriptor representation to right or
left matrix fraction or vice-versa

ss create state space models or convert LTI model to
state space form

Diagnostics

See also
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stab

Stabilizing controllers for linear systems

[Nc,Dc] = stab(N,D)

[Nc,Dc] = stab(N,D,'l')

[Nc,Dc] = stab(N,D,'r')

[Nc,Dc,E,F] = stab(N,D)

[Nc,Dc,E,F] = stab(N,D,'l')

[Nc,Dc,E,F] = stab(N,D,'r')

Given a linear time-invariant plant transfer matrix

P v D v N v( ) ( ) ( )= −1

where v  can be any of s, p, z, q, z−1 and d , the commands

[Nc,Dc] = stab(N,D)

[Nc,Dc]=stab(N,D,'l')

compute a stabilizing controller as in Fig. 19 with transfer matrix

C v N v D vC C( ) ( ) ( )= −1 .

Purpose

Syntax

Description
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Fig. 19. Feedback structure

The resulting closed-loop poles are randomly placed in the stability region (whose
shape naturally depends on the particular choice of operator). For the same plant,
the commands

[Nc,Dc,E,F] = stab(N,D)

[Nc,Dc,E,F] = stab(N,D,'l')

are used to get the parametrization of all stabilizing controllers in the form

C v N v P v E v T v D v P v F v T vC c( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )= + − −b gb g 1

P v( )  is an arbitrary but stable polynomial matrix parameter of compatible size and
T v( )  is another (not necessarily stable) arbitrary polynomial matrix parameter of
compatible size. The parameter can be chosen at will but so that the resulting
controller is proper (or causal) (Kucera 1979; Kucera, 1991).
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Notice: If any common factor that appear in C v( )  is cancelled, then the above
formula is the standard (Youla-Kucera) parametrization of all stabilizing controllers,
and det ( )P v  is the resulting closed-loop characteristic polynomial.

Similarly, for a plant transfer matrix

P v N v D v( ) ( ) ( )= −1

the command

[Nc,Dc] = stab(N,D,'r')

computes a stabilizing controller with transfer matrix described by

C v D v N vC C( ) ( ) ( )= −1 .

and the command

[Nc,Dc,E,F,degT] = stab(N,D,'r')

gives rise to the parametrization

C v P v D v T v F v P v N v T v E vc C( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )= − +−b g b g1

P v( )  is an arbitrary but stable polynomial matrix parameter of compatible size and
T v( )  is another (not necessarily stable) arbitrary polynomial matrix parameter of
compatible size. The parameter can be chosen at will but so that the resulting
controller is proper (or causal).
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Note:  If the plant is strictly proper (or causal) then the resulting controller is always
proper (causal). Otherwise its properness (causality) is not guaranteed and should
be checked separately.

Note: The macro handles only coprime polynomial matrix fraction descriptions of
the plant. If the fraction has a stable factor in common then the user should cancel
it before running stab.

Consider a simple continuous-time plant with

d = 2-3*s+s^2,n=s+1

d =

     2 - 3s + s^2

n =

     1 + s

The plant has two unstable poles

roots(d)   

ans =

    2.0000

    1.0000   

To obtain a stabilizing controller, type

Example 1
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[nc,dc] = stab(n,d)

nc =

     73 - 2.8s

dc =

     9.9 + s

Indeed, this controller gives rise to the closed-loop characteristic polynomial

cl = d*dc+n*nc

cl =

     93 + 43s + 4s^2 + s^3

and all closed-loop poles are in the left half plane

roots(cl)

ans =

  -0.8297 + 6.1991i

  -0.8297 - 6.1991i

  -2.3816
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Using the polynomial approach, not only one but all stabilizing controllers are
obtained. Type

[nc,dc,e,f] = stab(n,d)

nc =

     1.4 + 6.8s

dc =

     0.98 + s

e =

     2 - 3s + s^2

f =

     1 + s   

to get another (because of the macro random character) stabilizing controller along
with the whole parameterization

n

d

c s t s

c s t s
controller

controller

21.396 +  6.83s 2 -  3s +  s

0.9801 +  s 1 +  s
=

+
−

a f
a f a f

( ) ( ) ( )

( ) ( )

Taking c s( ) = 1 and t s( )  arbitrary we obtain all the controllers that assign the
closed-loop characteristic polynomial to be
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m = d*dc+n*nc

m =

     3.4 + 7.3s + 4.8s^2 + s^3   

with closed-loop poles at

roots(m)   

ans =

   -2.1221

   -1.8176

   -0.8701   

Similarly, for a fixed stable c s( )  and arbitrary t s( ) , unless we make any
cancellation in the controller, we always obtain the closed-loop characteristic
polynomial m s c s( ) ( ) . If we choose a t s( )  for which m s( )  cancels, however, and
perform the cancellation then the resulting closed-loop characteristic polynomial
equals exactly c s( ) . So for

c = (s+1)*(s+2)*(s+3)   

c =

     6 + 11s + 6s^2 + s^3   

and
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t   

t =

     2.525 + 3.616s + 1.17s^2   

we obtain

nc1 = nc*c+e*t   

nc1 =

     13.42 + 55.99s + 77.52s^2 + 42.48s^3 + 8s^4   

dc1 = dc*c-f*t  =

dc1 =

     3.356 + 10.64s + 12.09s^2 + 5.81s^3 + s^4   

Both polynomials are divisible by m. Indeed,

nc2 = nc1/m   

nc2 =

     4 + 8s   

dc2 = dc1/m

dc2 =
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     1 + s   

Applying this controller, we get

cl2 = d*dc2+n*nc2   

cl2 =

     6 + 11s + 6s^2 + s^3

roots(cl2)

ans =

   -3.0000

   -2.0000

   -1.0000

This equals the desired c s( ) .

Consider the three-input two-output discrete-time plant given by the transfer matrix
P z N z D z( ) ( ) ( )− − − −=1 1 1 1  with

N = [2 zi zi+1;1-2*zi 0 zi]

N =

     2             z^-1     1 + z^-1

Example 2
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     1 - 2z^-1     0        z^-1   

and

Dd = diag([2*zi+1 zi-1 1]);  

D = [1 1 1;0 1 zi;0 0 1]*Dd*[1 0 0;zi+1 1 0;zi 1 1]

D =

     3z^-1 + z^-2     z^-1          1

    -1 + 2z^-2       -1 + 2z^-1     z^-1

     z^-1             1             1   

The plant is stabilized by the controller C v D v N vC C( ) ( ) ( )= −1  with

[Nc,Dc] = stab(N,D,'r')

Nc =

     16    -21 + 5.2z^-1

     21    -37 + 7.1z^-1

    -86     1.5e+002 - 29z^-1

Dc =



Commands — Online reference

stab

    -13 + 12z^-1       -2.4 - 6.4z^-1   -2.4 - 4z^-1 +

1.2z^-2

    -32 + 13z^-1        5.9 - 5.5z^-1    11 - 3.1z^-1 -

1.6z^-2

     1.3e+002 - 57z^-1  -22 + 29z^-1     -22 + 31z^-1

Indeed, the feedback matrix

Cl = Dc*D+Nc*N

Cl =

     13 + 11z^-1 + 2.5z^-2     0                 0

     0                         5.1 + 3.1z^-1     0

     0                         0                 19 + 17z^-
1   

is stable as

isstable(Cl)   

ans =

     1   

Given P D N= −1 , the macro computes C N DC C= −1 by solving the linear polynomial
matrix equation DD NN Rc c+ =  with random stable diagonal right hand side matrix

Algorithm
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R  of suitable degrees. Similarly, given P ND= −1, the controller C D NC C= −1  is
constructed by solving the equation D D N N Rc c+ = .

The macro returns error messages in the following situations:

• The input arguments are not polynomial objects

• The input matrices have inconsistent dimensions

• The input string is incorrect

• The input polynomial matrices are not coprime

pplace pole placement

debe deadbeat regulator design

Diagnostics

See also
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stabint

Robust stability interval for a single parameter uncertain polynomial

[rmin,rmax] = stabint(p0,p1,...,pn)

[rmin,rmax] = stabint(p0,p1,...,pn,tol)

Given an uncertain polynomial

p s r p s rp s r p s r p sn
n( , ) ( ) ( ) ( ) ( )= + + + +0 1

2
2 L

with a single real scalar uncertain parameter r  that is nominally stable (i.e., such
that p s p s( , ) ( )0 0=  is stable), the command

[rmin,rmax] = stabint(p0,p1,...,pn)

returns the smallest negative real number rmin  and the largest positive real number
rmax  such that the polynomial p s r( , )  remains stable for all r r r∈ min max,b g . In other
words, r rmin max,b g  is the largest robust stability interval that contains r = 0  for the
uncertain polynomial p s r( , ) . The macro works both for continuous- and discrete-
time polynomials.

Note: To avoid possible degree drop problems it is required that deg degp pi0 >  for
all i n= 1 2, , ,L .

Purpose

Syntax

Description
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If  P s r P s rp s r P s r P sn
n( , ) ( ) ( ) ( ) ( )= + + + +0 1

2
2 L  is a square polynomial matrix

depending on a single uncertain parameter then the command

[rmin,rmax] = stabint(P0,P1,...,Pn)

finds the largest robust stability interval for its (2-D) determinant

det ( , ) ( , ) ( ) ( ) ( )P s r q s r q s rq s r q sm
m= = + + +0 1 L

where q s P s0 0( ) det ( )= , and, of course, m n≥ . However, then it is necessary to
have deg degq qi0 >  for all i m= 1, ,K . That is, the condition must hold for degrees
in the determinant and not only for the degrees of  the given matricesPi.

Note: The macro may be called with a local tolerance as the last input argument.
On the other hand, the last input argument is considered to be the tolerance
whenever it is a scalar.

The call

[rmin,rmax]=stabint(1+s,pol(1))   

returns the evident answer

rmin =

    -1

rmax =

   Inf   

Example 1
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and so does the call

[rmin,rmax]=stabint(z,pol(1))   

rmin =

    -1

rmax =

     1   

Note that here pn = 1 must be put in as pol(1). If just 1 is typed then it is
mistakenly considered to be a desired tolerance value.

To check for robust stability interval the uncertain polynomial

p s r r q s s( , ) = − + − +3 2 2a f b g ,

write it first as

p s r s s r s( , ) = + + + − −3 2 12e j a f

and input the data

p0=3+2*s+s^2,p1=-1-s   

p0 =

     3 + 2s + s^2

Example 2
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p1 =

    -1 - s   

Then test nominal stability by

isstable(p0)   

ans =

     1   

and finally call

[rmin,rmax]=stabint(p0,p1)   

rmin =

  -Inf

rmax =

    2.0000   

This result may be confirmed by the root-locus-like plot of Fig. 20 for a fictitious
plant p s p s1 0( ) ( ) :

rlocus(ss(-s-1,s^2+2*s+3),-10:.01:2)
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Fig. 20. Root locus plot

Finally consider the single parameter uncertain matrix

P s r
r s s s

s s rs s
( , ) =

+ + + − −
+ + +

L
NMM

O
QPP

1 2 1

1

2

2

Example 3
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Typing

P0=[1+2*s+s^2,-1-s;1+s,s+s^2]

P0 =

     1 + 2s + s^2    -1 - s

     1 + s            s + s^2   

P1=[1 0;0 s]   

P1 =

     1     0

  0     s   

and

[rmin,rmax]=stabint(P0,P1)   

we obtain the interval

rmin =

   -0.6633

rmax =

   Inf   
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The method of the guardian map is used as described by Barmish (1996). The
matrix case is reduced to scalars by computing a two-dimensional determinant.

The macro returns error messages in the following situations:

• The input arguments are not polynomial objects

• The input matrices have inconsistent dimensions

• There are less than two input polynomials

• The first input argument is not a stable polynomial

• The degree condition is not satisfied

ptopex extreme polynomials for polytope of polynomials

ptopplot plot value set of a polytope of polynomials

Algorithm

Diagnostics

See also
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subsasgn

Subscripted assignment for a polynomial matrix

P{pwr} = R

P(ri,ci) = R

P.var = string

P.user = string

If P is the polynomial matrix

P = P0 + P1*s + P2*s^2 + ... + Pd*s^d

then the command

P{0:d} = R

sets the compound coefficient matrix

[P0 P1 P2 ... Pd]

equal to R. The assignment

P{k} = R

sets the kth coefficient matrix Pk of P equal to R. The command

Purpose

Syntax

Description
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P(ri,ci) = R

sets the polynomial submatrix of P of row indices ri and column indices ci equal
to R.

The assignment

P.var = R

sets v, the indeterminate string variable of P, while the command

P.user = R

sets u, the user data of P.

 The subscripted references may be combined. For instance,

P{0}(ri,ci)= R

sets the constant coefficient matrix corresponding to a submatrix of P equal to R.

Let

P = [1+2*s 3+4*s^2]   

P =

     1 + 2s     3 + 4s^2   

We may modify the constant coefficient matrix of P by a command such as

Examples
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P{0} = [5 6]   

This results in

P =

     5 + 2s     6 + 4s^2   

The (1,2) entry may be changed according to

P(1,2) = 7*s^3   

P =

     5 + 2s     7s^3   

The indeterminate variable may be redefined by typing

P.var = 'z'

P =

     5 + 2z     7z^3   

The macro employs basic MATLAB 5 operations.

The macro returns error messages under numerous erroneous input conditions. It
issues a warning if inconsistent variables are encountered.

subsref subscripted reference for a polynomial matrix

Algorithm

Diagnostics

See also
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subsref

Subscripted reference for a polynomial matrix

P{pwr}

P(ri,ci)

P.coef

P.deg

P.size

P.user

P.var

If P is the polynomial matrix

P = P0 + P1*s + P2*s^2 + ... + Pd*s^d

then

P{di}

returns the block row constant matrix corresponding to the degree indices di. In
particular,

Purpose

Syntax

Description
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P{0:d}

is [P0 P1 P2 .. Pd],

P{0}

is P0, the constant coefficient matrix of P, and

P{k}

is Pk, the kth coefficient matrix of P. The call

P(ri,ci)

returns the polynomial submatrix of P with row indices ri and column indices ci.

The call

P.deg

returns the degree of P,

P.size

returns the size of P,

    P.coef

returns the three dimensional coefficient matrix of P,

    P.var
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returns the indeterminate string variable of P, and

    P.user

returns the user data of P.

The subscripted references may be combined. For instance, P(ri,ci).deg
returns the degree of a submatrix of P, and P{di}(ri,ci) returns the coefficient
matrix corresponding to the degree di of the submatrix P(ri,ci).

Let

P = [1+2*s 3+4*s^2]   

P =

     1 + 2s     3 + 4s^2   

The constant coefficient matrix follows as

P{0}   

ans =

     1     3   

while the (1,2) entry may be retrieved according to

P(1,2)   

 ans =

Examples
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     3 + 4s^2   

The degree of the (1,1) entry is

P(1,1).deg   

ans =

     1   

The macro employs basic MATLAB 5 operations.

The macro returns error messages under numerous erroneous input conditions.

subsasgn subscripted assignment for a polynomial matrix

Algorithm

Diagnostics

See also
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sylv

Create the Sylvester matrix of a polynomial matrix

S = sylv(A)

S = sylv(A,k)

S = sylv(A,'row')

S = sylv(A,'col')

S = sylv(A,k,'row')

S = sylv(A,k,'col')

The commands

S = sylv(A,k)

S = sylv(A,k,'row')

create the Sylvester resultant matrix S of order k from the polynomial matrix A. If

A s s s sd( ) = + + + +A0 A1 A2 Ad2 L

then

Purpose

Syntax

Description
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S

k

=

L

N

MMMM

O

Q

PPPP +

A0 A1 Ad

A0 A1 Ad

A0 A1 Ad

L L L

L L

L L L L L L L L

L L L

L

0 0

0 0 0

0 0 1

Block row 1

Block row 2

Block row 

The integer k is the number of zero blocks in each block row. Its default value is k =
d. In the form

S = sylv(A,k,'col')

a column Sylvester matrix is formed.

If

A = 1+2*s+3*s^2;   

then

sylv(A)   

returns

ans =

     1     2     3     0     0

     0     1     2     3     0

     0     0     1     2     3   

Examples
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while

sylv(A,4,'col')   

results in

ans =

     1     0     0     0     0

     2     1     0     0     0

     3     2     1     0     0

     0     3     2     1     0

     0     0     3     2     1

     0     0     0     3     2

     0     0     0     0     3   

The macro uses standard MATLAB 5 and Polynomial Toolbox operations.

The macro issues an error message if

§ It does not have enough input arguments

§ It has too many numerical or string inputs

§ The requested order is not a nonnegative integer

Algorithm

Diagnostics
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§ An incorrect input string is encountered

axb, axbc, axybc
axxab, axyab, axybc

xaaxb, xab, xaybc

linear polynomial matrix equation solversSee also
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sym

Convert a polynomial matrix to the format of the Symbolic Toolbox

PS = sym(P)

PS = sym(P,var)

The commands

PS = sym(P)

PS = sym(P,var)

convert a polynomial matrix P in the Polynomial Toolbox format to a matrix PS in
the format of the Symbolic Toolbox.

The entries of PS are polynomial expressions in the indeterminate var. If var is
not specified then the variable of P is copied.

Given the polynomial matrix defined in Polynomial Toolbox format by

P = [ 1+2s    0

        1   3s^2 ];

the command

sym(P)

Purpose

Syntax

Description

Examples
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returns

ans =

[ 2*s+1,     0 ]

[     1, 3*s^2 ]

The command

sym(P,'d')

on the other hand, results in

ans =

[ 2*d+1,     0]

[     1, 3*d^2]

The macro uses standard MATLAB 5, Polynomial Toolbox and Symbolic Toolbox
commands. It requires the directory of the Symbolic Toolbox to be in the MATLAB

search path.

The macro returns an error message if the input is inappropriate.

pol, lop specify a polynomial matrix or convert a matrix in standard MATLAB

or Symbolic Toolbox format to Polynomial Toolbox format

Algorithm

Diagnostics

See also
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tf

Create transfer function models or convert an LTI system to a transfer function
model

sys = tf(N,D)

sys = tf(N,D,'l')

sys = tf(N,D,'r')

sys = tf(N,D,T[,tol])

sys = tf(N,D,'l',T[,tol])

sys = tf(N,D,'r',T[,tol])

The command tf is a function from the MATLAB Control System Toolbox that
creates transfer function objects, or converts other LTI objects to transfer function
objects. A model is in transfer function form if the numerator polynomial nij  and the
denominator dij  of each entry

H
n

dij
ij

ij
=

of the transfer matrix H of the system are specified.

Purpose

Syntax

Description
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The function tf has been overloaded so that in addition to its Control System
Toolbox functionality it converts systems represented in left or right polynomial
matrix fraction form to a Control System Toolbox LTI object in transfer function
form.

Let D be a square nonsingular row reduced polynomial matrix and N a polynomial
matrix with the same number of rows. Then the commands

sys = tf(N,D)

sys = tf(N,D,'l')

convert the system with transfer matrix

H D N= −1

to a Control System Toolbox LTI object in transfer function form.

If N and D are polynomial matrices in s or p then a continuous-time LTI object is
created. If they are matrices in z, q, z^-1 or d then a discrete-time object with
sampling time T = 1 is created. In the latter case the commands

sys = tf(N,D,T)

sys = tf(N,D,'l',T)

with T a real number, create a discrete-time system with sampling time T. If T = 0
then the object is taken to be a continuous-time system.
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If the option 'l' is replaced with 'r' then N and D define the system whose
transfer matrix is the right fraction

H ND= −1

D needs to be square nonsingular column reduced with the same number of
columns as N.

The optional input parameter tol defines a tolerance that is used in the conversion
of the matrix fraction to transfer function form. Note that this parameter may only be
included if also the input parameter T is included.

The function tf only works if the Control System Toolbox is included in the MATLAB

path.

Later versions of the Polynomial Toolbox will support a polynomial matrix fraction
LTI object.

If we let

N = 1; D = s+1;   

then we obtain

tfsys = tf(N,D)   

 Transfer function:

  1

Examples
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-----

s + 1   

On the other hand,

N = [ 1

      1 ];

D = [ 1+z  0

       2  z^3 ];   

results in

tfsys = tf(N,D)   

Transfer function from input to output...

        1

 #1:  -----

      z + 1

        z - 1

 #2:  ---------

      z^4 + z^3
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Sampling time: 1   

The function calls lmf2tf or rmf2tf.

The function returns an error message in the following circumstances:

§ The Control System Toolbox is not included in the MATLAB path

§ N and D are polynomial matrices in different variables

§ The third, fourth or fifth input argument are incorrect

lti2lmf, lti2rmf conversion of a state space LTI object  to a left or right
matrix fraction

ss creation of a transfer function LTI object or conversion
to a state space model

zpk creation of a zero-pole-gain LTI object or conversion to
a zero-pole-gain model

lmf2tf, rmf2tf

tf2lmf, tf2rmf

conversion from a left or right polynomial matrix fraction
model to a transfer function model, and vice-versa

Algorithm

Diagnostics

See also
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transpose (.')

Transpose of a polynomial matrix

At = A.'

At = transpose(A)

For a polynomial matrix A, the commands

At = A.'

At = transpose(A)

return the polynomial matrix At that is formed by transposing the matrix A.

Consider

P = [(1+i)*s (1-i)*s+s^2];   

The conjugate transpose of this polynomial matrix is

P.'   

 ans =

     (1+1i)s

     (1-1i)s + s^2   

Purpose

Syntax

Description

Examples
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If

P = [(1+i)*z (1-i)*z+z^2];

then

P.'   

similarly results in

 ans =

     (1+1i)z

     (1-1i)z + z^2   

The macro transpose uses standard MATLAB operations.

The macro displays an error message if it has too many input arguments or too
many output arguments.

conj conjugate of a polynomial matrix

ctranspose (') complex conjugate transpose of a polynomial matrix

real real part of a polynomial matrix

imag imaginary part of a polynomial matrix

Algorithm

Diagnostics

See also



Commands — Online reference

tri

tri

Triangular or staircase form of a polynomial matrix

[T,U,rowind] = tri(A)

[T,U,rowind] = tri(A,'col')

[T,U,colind] = tri(A,'row')

[T,U,rowind] = tri(A,degree)

[T,U,rowind] = tri(A,degree,'col')

[T,U,colind] = tri(A,degree,'row')

[T,U,ind] = ...

   tri(A[,degree][,'col'|,'row'])[,'syl'|,'gau'][,tol])

Given an arbitrary polynomial matrix A, the commands

[T,U,rowind] = tri(A)

[T,U,rowind] = tri(A,'col')

compute a column staircase form T of A. In particular, if A is non-singular then T is
a lower-left triangular matrix. The unimodular reduction matrix U is such that AU =
T, and the ith entry rowind(i)  of the row vector rowind is the row index of the

Purpose

Syntax

Description
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uppermost non-zero entry in the ith column of T. Note that rowind(i) = 0 if the ith
column of T is zero. As a result, the number of non-zero elements in rowind is the
algorithm's idea of the rank of A. The off-diagonal elements in the staircase form
are not necessarily reduced, so the output generally differs from that of macro
hermite.

Similarly,

[T,U,colind] = tri(A,'row')

computes a row staircase form of A, the unimodular reduction matrix U such that
UA = T and a column vector colind such that colind(i) is the column index of
the leftmost non-zero entry in the ith row of T.

The command

tri(A,degree)

seeks a reduction matrix U of given degree degree. If degree is not specified
then a reduction matrix of minimum overall degree is computed by an iterative
scheme. If degree is negative then a reduction matrix of maximum achievable
degree is returned.

The command

tri(A,'syl')

performs the transformation through stable reductions of Sylvester matrices. This
method is preferable numerically and is the default method. The command
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tri(A,'gau')

performs the transformation through a modified version of Gaussian elimination.
This method is preferable esthetically.

An optional tolerance tol may be specified as an additional input argument. Its
default value is the global zeroing tolerance.

Consider the polynomial matrix

A = [ s^2   0    1

       0   s^2  1+s];   

To find its column staircase form and associated quantities we type

[T,U,rowind] = tri(A)   

MATLAB returns

T =

    -1         0          0

    -1 - s    -1.2s^2     0

U =

     0     0.29             0.5

     0    -0.87 + 0.29s     0.5 + 0.5s

Examples
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    -1    -0.29s^2         -0.5s^2

rowind =

     1     2     0   

Next consider

B = [ 1-d^2   0   1-d

        0    1+d   0

      1-d^2  1+d   1   ];  

By the command

T = tri(B)   

we obtain the lower triangular form

T =

    -1.2 + 1.2d                0         0

     0                        -1 - d     0

    -1.2 + 0.41d + 0.41d^2    -1 - d    -0.58d - 0.58d^2   

Note that this matrix is not in column Hermite form.
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The command tri(A,'syl')performs the reduction to triangular form through
QR decomposition of a Sylvester matrix of given order d. The QR decomposition is
performed by Householder transformations in the macro cef. If the reduction of a
Sylvester matrix of order d is successful then it results in a unimodular matrix of
degree d. If the reduction fails then the order d must be increased.

The critical point is how to find the minimum value of d such that the reduction is
successful. In order to find this value, the macro performs a simple bisection
(dichotomy) search. Guaranteed bounds on d are d_lower = 0 and

d_upper = min(cd(1) + cd(2) + ... + cd(nc-1),

              rd(1) + rd(2) + ... + rd(nr-1))

where cd(1) ≥ cd(2) ≥ ... ≥ cd(nc-1) ≥ cd(nc) are column degrees
and rd(1) ≥ rd(2) ≥ ... ≥ rd(nr-1) ≥ rd(nr) are row degrees of
the nc nr×  input matrix A.

To bypass the dichotomy search on d the user may provide the reduction degree in
the form of the command tri(A,d). If the reduction with order d fails then d_low
is set equal to d and the dichotomy search is carried out

Another method to bypass the dichotomy search on d is to use the syntax
tri(A,-1). Then we d is set equal to d_up and the triangularization is
performed only once.

Algorithm
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Note however that, depending on the input matrix, several triangularizations of a
Sylvester matrix of low order may be computationally less intensive than one
triangularization of a Sylvester matrix of maximum order d = d_up.

If the unimodular reduction matrix is required then it is computed by reducing the
compound matrix [A; I] to triangular form, so that

[A; I]*U = [T; U]

provides both the triangular form T and the unimodular matrix U.

All the above points are described in Henrion and Sebek (1998b, 1999).

The command tri(A,'gau') performs the reduction of Sylvester matrices of
increasing orders by a modified version of Gaussian elimination with partial
pivoting. The algorithm is designed to preserve the shift-invariant Toeplitz structure
of the Sylvester matrix (Labhalla, Lombardi and Marlin, 1996). It is actually a
specialization to triangularization of the greatest common divisor extraction
algorithm described in Bitmead et al. (1978).

The macro tri issues error messages if

§ An invalid input argument or matrix argument is encountered

§ An invalid option is encountered

§ Invalid Not-a-Number or Infinite entries are found in the input matrices

§ The reduction fails in one of several ways

Diagnostics
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In the latter case the tolerance should be modified. A warning follows if the user-
supplied degree is greater than the maximum expected degree.

hermite Hermite form of a polynomial matrix

smith Smith form of a polynomial matrix

See also
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tril

Extract the lower triangular part of a polynomial matrix

Q = tril(P)

Q = tril(P,k)  

The command

Q = tril(P)

returns a matrix Q whose lower triangular part (including the diagonal) equals that
of the polynomial matrix P. The strictly upper triangular entries are zero.

The command

Q = tril(P,k)

returns a lower triangular matrix that retains the polynomial elements of P on and
below the k-th diagonal and sets the remaining elements equal to 0. The values k =
0, k > 0 and k < 0 correspond to the main, superdiagonals and subdiagonals,
respectively.

The commands

P =[ 1+s    2*s^2

     -2    3+4*s^3 ];

Purpose

Syntax

Description

Examples
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Q = tril(P)   

produce the response

 Q =

     1 + s     0

    -2         3 + 4s^3   

while

Q = tril(P,-1)   

results in

 Constant polynomial matrix: 2-by-2

Q =

     0     0

    -2     0   

The routine uses standard routines from the Polynomial Toolbox.

The macro displays no error messages.

triu extract the upper triangular part

diag extract diagonals or create diagonal matrices

Algorithm

Diagnostics

See also
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triu

Extract the upper triangular part of a polynomial matrix

Q = triu(P)

Q = triu(P,k)  

The command

Q = triu(P)

returns a matrix Q whose upper triangular part (including the diagonal) equals that
of the polynomial matrix P. The strictly upper triangular entries are zero.

The command

Q = triu(P,k)

returns a upper triangular matrix that retains the polynomial elements of P on and
above the k-th diagonal and sets the remaining elements equal to 0. The values k
= 0, k > 0 and k < 0 correspond to the main, superdiagonals and subdiagonals,
respectively.

The commands

P =[ 1+s    2*s^2

     -2    3+4*s^3 ];

Purpose

Syntax

Description

Examples
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Q = triu(P)   

produce the response

 Q =

     1 + s     2s^2

     0         3 + 4s^3   

while

Q = triu(P,1)   

results in

 Q =

     0     2s^2

     0     0   

The routine uses standard routines from the Polynomial Toolbox.

The macro displays no error messages.

tril extract the lower triangular part

diag extract diagonals or create diagonal matrices

Algorithm

Diagnostics

See also
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zpk

Create zero-pole-gain models or convert an LTI system to a zero-pole-gain model

sys = zpk(N,D)

sys = zpk(N,D,'l')

sys = zpk(N,D,'r')

sys = zpk(N,D,T[,tol])

sys = zpk(N,D,'l',T[,tol])

sys = zpk(N,D,'r',T[,tol])

The command zpk is a function from the MATLAB Control System Toolbox that
creates zero-pole-gain (ZPK) objects, or converts other LTI objects to zero-pole-
gain objects. A model is in zero-pole-gain form if each entry Hij  of the transfer
matrix of the system is specified in the form

H s k

s z

s p
ij

j
j

j
j

( )

( )

( )
=

−

−

∏
∏

with z jj, , ,= 1 2 L ,  its zeros, p jj, , ,= 1 2 L , its poles, and k its gain.

Purpose

Syntax

Description
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The function zpk has been overloaded so that in addition to its Control System
Toolbox functionality it converts systems represented in left or right polynomial
matrix fraction form to a Control System Toolbox LTI object in zero-pole-gain form.

Let D be a square nonsingular row reduced polynomial matrix and N a polynomial
matrix with the same number of rows. Then the commands

sys = zpk(N,D)

sys = zpk(N,D,'l')

convert the system with transfer matrix

H D N= −1

to a Control System Toolbox LTI object in zero-pole-gain form.

If N and D are polynomial matrices in s or p then a continuous-time LTI object is
created. If they are matrices in z, q, z^-1 or d then a discrete-time object with
sampling time T = 1 is created. In the latter case the commands

sys = zpk(N,D,T)

sys = zpk(N,D,'l',T)

with T a real number, create a discrete-time system with sampling time T. If T = 0
then the object is taken to be a continuous-time system.

If the option 'l' is replaced with 'r' then N and D define the system whose
transfer matrix is the right fraction
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H ND= −1

D needs to be square nonsingular column reduced with the same number of
columns as N.

The optional input parameter tol defines a tolerance that is used in the conversion
of the matrix fraction to zero-pole-gain form. Note that this parameter may only be
included if also the input parameter T is included.

The function zpk only works if the Control System Toolbox is included in the
MATLAB path.

Later versions of the Polynomial Toolbox will support a polynomial matrix fraction
LTI object.

The command

zpksys = zpk(s+1,s+2)   

results in

 Zero/pole/gain:

(s+1)

-----

(s+2)   

On the other hand

Examples
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N = [ 1;

      1 ];

D = [ z+1  2

       0  z^2 ];   

results in

zpksys = zpk(N,D)   

Zero/pole/gain from input to output...

      (z-1.414) (z+1.414)

 #1:  -------------------

           z^2 (z+1)

       1

 #2:  ---

      z^2

Sampling time: 1   

The function calls lmf2zpk or rmf2zpk.Algorithm
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The function returns an error message in the following circumstances

§ The Control System Toolbox is not included in the MATLAB path

§ N and D are polynomial matrices in different variables

§ The third, fourth or fifth input argument are incorrect.

lti2lmf, lti2rmf conversion of a state space LTI object  to a left or
right matrix fraction

ss creation of a transfer function LTI object or
conversion to a state space model

tf creation of a transfer function LTI object or
conversion to a transfer function model

lmf2zpk, rmf2zpk

zpk2lmf, zpk2rmf

conversion from a left or right polynomial matrix
fraction model to a zero-pole-gain model, and vice-
versa

Diagnostics

See also
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zpk2lmf, zpk2rmf

Conversion of a transfer matrix in zero-pole-gain (ZPK) format to a left or right
matrix fraction

[N,D] = zpk2lmf(Z,P,K[,tol])

[N,D] = zpk2rmf(Z,P,K[,tol])

Given two cell arrays Z and P and a matrix K that together define a transfer matrix
H in ZPK format, the function

[N,D] = lmf2zpk(Z,P,K)

returns the transfer function as the left coprime fraction

H D N= −1

In the ZPK format format, each entry

H s k

s z

s p
ij

j
j

j
j

( )

( )

( )
=

−

−

∏
∏

of the transfer matrix is characterized by its zeros z jj, , ,= 1 2 L , its poles
p jj, , ,= 1 2 L , and its gain k.

Purpose

Syntax

Description
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Z and P are cell arrays and K is a matrix. Each cell of Z contains the zeros of the
corresponding transfer function, each cell of contains P the poles, and each entry
of K contains the gain. Note that the polynomials whose gain and roots are
represented are taken as polynomials in the default indeterminate variable, and
that correspondingly N and D are returned as polynomial matrices in the default
variable.

Similarly, the function

[N,D] = zpk2rmf(Z,P,K)

returns the transfer function as the right coprime fraction

H ND= −1

In both cases a tolerance tol may be specified as an additional input argument.
Its default value is the global zeroing tolerance.

Consider the transfer function

H s
s

s
s s
s

( )
( ) ( )

=
−

+
+

+
L
NM

O
QP

2 1
2

3
2

Inspection shows that its ZPK data are

Z = cell(1,2); Z{1,1} = 1; Z{1,2} = [0 -3]

P = cell(1,2); P{1,1} = -2; P{1,2}= -2

Examples
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K = [ 2  1 ]   

Z =

    [1]    [1x2 double]

P =

    [-2]    [-2]

K =

     2     1   

The corresponding left matrix fraction is

[Nl,Dl] = zpk2lmf(Z,P,K)   

Nl =

    -2 + 2s     3s + s^2

Dl =

     2 + s   

while the right matrix fraction is

[Nr,Dr] = zpk2rmf(Z,P,K)   

Nr =
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     0.33 + s    -2.7

Dr =

    -0.33     2.7 + s

     1       -2   

Using the routine root2pol the ZPK data are converted to transfer function
format, which is subsequently transformed to matrix fraction form by the routines
tf2lmf or tf2rmf.

The macros zpk2lmf and zpk2rmf return error messages if the number of input
arguments is incorrect.

lmf2zpk, rmf2zpk conversion from transfer function format to a left or right
polynomial matrix fraction

zpk create a Control System Toolbox LTI object in ZPK
format

tf2lmf, tf2rmf
lmf2tf, rmf2tf

conversion of transfer matrices to left or right matrix
fractions, and vice-versa

Algorithm

Diagnostics

See also
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zpplot

Zero-pole map of a polynomial matrix transfer function

zpplot(N,D)

zpplot(P)

zpplot(N,D,'new')

zpplot(P,'new')

Given two polynomial matrices N and D the command

 zpplot(N,D)

computes the roots of D and plots each of them as ∗   and the roots of N and plots
each of them as o . If the polynomial matrices have consistent dimensions then
these roots correspond to the poles and zeros, respectively, of the matrix transfer
function D N−1  or ND−1 .

The command

zpplot(P)

computes the roots (zeros) of the polynomial matrix P and plots each of them in the
complex plane as o .

Purpose

Syntax

Description
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For “discrete-time” matrices (polynomial matrices in the variables z, d or z−1) also
the unit circle is plotted.

By including the optional input argument 'new' a new figure window is opened.

Let

N = 1+2*s+3*s^2; D = 5+6*s+7*s^2+s^3;   
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Fig. 21. Pole-zero plot of a transfer function

Examples
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Then

zpplot(N,D)

produces the zero-pole plot of Fig. 21.  On the other hand, let

gensym z, P = prand(4,3,3,'int')   

Polynomial matrix in z: 3-by-3,  degree: 4

P =

  Columns 1 through 2

    -8 + z + z^2 - 6z^3 + 6z^4     6 + 2z^2 + z^3 - z^4

     5 - 4z^3 + z^4               -7 + 4z + 8z^2 - 3z^3 +

4z^4

     3 + 4z + 4z^2 + 6z^3 + 3z^4   6 - 6z - z^3 - 8z^4

  Column 3

     4 - 3z + 11z^2 - z^3 + z^4

     6 - 8z - 7z^2 + 3z^3 - 2z^4

     1 - 5z + 7z^2 - 4z^3 + 3z^4  

The command
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zpplot(P)

produces Fig. 22.

The macro uses basic operations from MATLAB 5 and the Polynomial Toolbox.

The macro returns an error message if the number of input or output arguments is
incorrect.

roots Roots of a polynomial matrix
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Fig. 22. Plot of the zeros of a “discrete-time” polynomial matrix

Algorithm

Diagnostics

See also
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