Polynomial solution of the SISO mixed sensitivity H-infinity problem

Synopsis Mixed sensitivity optimization is a powerful design tool for linear single-degree-of-
freedom feedback systems. It allows simultaneous design for performance and
robustness, and relies on shaping the two critical closed-loop sensitivity functions
with frequency dependent weights.

To obtain satisfactory high-frequency roll-off nonproper weighting functions may be
needed. These cannot be directly handled in the conventional state space solution of
the H-infinity problem. Nonproper weighting functions present no problems in the
frequency domain solution of the H-infinity problem. The frequency domain solution
may be implemented in terms of polynomial matrix manipulations.

We present the mixed sensitivity problem and its solution for single-input-single-
output plants. Step by step the Toolbox function m xeds is developed that
implements the algorithm. A simple but relevant example is used for illustration.

Introduction To demonstrate the capabilities of the Polynomial Toolbox we implement the
polynomial solution of a mixed sensitivity H-infinity problem. Consider the single-
degree-of-freedom feedback loop of P is the plant transfer matrix and C the
compensator transfer matrix.

u +¢ z

C o r O

Fig. 1. Single-degree-of-freedom feedback loop

The sensitivity matrix S and input sensitivity matrix U of the feedback system are
defined as

S=I+PC)', U=Cc(I+PO)!
The mixed sensitivity problem is the problem of minimizing the infinity norm ||H]|_ of

_[wsv
| wuv

with suitably chosen weighting matrices W; and W;, and V a suitably chosen
shaping matrix. In the SISO case the infinity norm is given by

IH2 = sup (IW(0)SGo)V(ia) P+ W (ioU(o)Vio))

—oco L (P < oo

The problem may be reduced to a “standard” H-infinity problem by considering the
block diagram of which includes the weighting and shaping filters.

The diagram of defines a standard problem whose “generalized plant” has the
transfer matrix

[N

—= n

<

Fig. 2. Mixed sensitivity configuration

The closed-loop transfer matrix from w to

Z2=
22
1s precisely the function H whose infinity-norm we wish to minimize.

There are many ways to solve this problem, but only the frequency domain solution
(Kwakernaak, 1996) allows the generalized plant to have a nonproper transfer matrix
G. To enhance robustness at high frequencies it usually is necessary to make the
weighting filter W, nonproper, which in turn makes G nonproper.

Numerical
example

Left coprime
polynomial
matrix fraction
representation

For simplicity we develop the solution for the SISO case only. Suppose that

p=lt yv=D w24 w22
d d by by

where the numerators and denominators are (scalar) polynomials. Note that P and V
have the same denominators d — this makes partial pole placement possible (Kwa-
kernaak, 1993).

We study in particular the following numerical example (Kwakernaak, 1963):

L W©=1 Wy®=cl+rs)

2
P(s) =i2’ V(s) =%
s s

where we let ¢ = r = 1. Note that W, is nonproper and, hence, the generalized plant G
is nonproper. The various polynomials are defined by the following command lines:

% Defi ne the data

n=1;, d

sN2; m = sM2+s*sqrt(2) +1;

c =1, r =1; al =1; bl =1, a2 = c*(1l+r*s); b2 = 1;

The frequency domain solution of the H., problem of Kwakernaak (1996) is based on
polynomial matrix manipulations. It requires G to be represented in left coprime
polynomial matrix fraction form. The desired left coprime factorization is

am | an
bid | oyd| o, 0 a0 |0
G=| 0 |2]=|0 b |0]| |0 |a
by
mm ‘O 0 d‘ LI-m | n|
d d | (D D] [V V]

The partitioning is needed for the solution of the H,, problem. The following code
lines define the various polynomial matrices:

% Define the various polynomal matrices

D1 [bl1 O; O b2; 0 0];

D2

[a1 ; O ; d];

Frequency
domain solution
of the H-infinity
problem

Spectral
factorization

N1

[0O O, -m];

N2 [0; a2; -n];

These code lines are actually taken from the macro m xeds, which automates the
entire computation.

As usual in the solution of the H,, problem we consider the problem of finding a
compensator that stabilizes the system and makes the infinity norm of the closed-
loop transfer matrix less than or equal to a given number y. Define the rational
matrix

—]\]>< ® 1 K\ —
;! =l f}(D1D1 - NiN) [Ny Dy]
D, Y

The * denotes conjugation, that is, A*(s) = AT(—S). In the next subsection it is seen
how a spectral factorization

_1 _ K
! = M;JM,

of H}_,1 may be obtained. The spectral factor M}, 1s a square rational matrix such that
both M, and M,* have all their poles in the open left-half plane. The matrix J/ is a
signature matrix of the form

g

where the two unit matrices do not necessarily have the same dimensions.

Given this spectral factorization, all compensators whose norm is less than the
number y are of the form K = X “lY, where

[X Y]=[I U]M},
U is a rational stable matrix such that ||U||°° < 1. In particular one may chose U =0.
We consider the spectral factorization
-1 _ %
I, =M,JM,

It requires the following steps.

The first
polynomial
spectral
factorization

Left-to-right
conversion

1. Do the polynomial spectral cofactorization

% 1 * _
D, D, —7N1N1 =Q,J,Q,"

2. Perform the “left-to-right” conversion
-1 _ -1
Qy [Ny Dp]=A,A,
3. Do the polynomial factorization
* *
Ay A, =TT,
Then the desired spectral factor is
_ -1
M7 - F?’AV

The first spectral factorization may actually be done analytically, because we have

I 0

DlDl ——2N1N1 Z[Dl Nl] 0 _i[[Dl Nl]
/4 }/2
by 0 0]J1 0 0 [[by 0 OT
=0 b 0[O0 1 0 [0 b O
0 0 m|0 O —i 0 0 m

7/2

Inspection shows that if each of the polynomials b;, by and m is strictly Hurwitz then
the desired spectral factorization may be rendered in slightly modified form as

) by 0 0 10 0
DlDT——2N1Nik=QJ;lQ*, Q=|0 b, 0, J,=|0 1 0
g 0 0 m 00 -2

The computation of the left-to-right conversion
Q '[Ny Dy]=aA"?
may easily be coded.

% Left-to-right conversion

Q= diag([bl b2 nj);
[Del,Lan] = Inf2rnf([N2 D2], Q

The result is

Del =
-0.71 0.71 + s
0.71 + 1.7s + s”2 0.71 + 0.71s
-0.71 -0.71 + s
Lam =
0.71 + s 0.71
-0.71 0.71 + s
Second The second spectral factorization now takes the form
polynomial .)
factorization AJyA=T,dT,

It is not difficult to write the necessary code lines
% Def i ne gamma
gamma = 4;
% Spectral factorization
Jgama = eye(3); Jgammm(3, 3)= -ganma”’2;

Del Del

Del ' * Jganma* Del ;
[Gam J] = spf(Del Del)
Gam =
-1.3e+002 - 50s - s”2 -2.2e+002 - 0.046s

1. 3e+002 + 48s + 0.17s"2 2.2e+002 - 3.8s

0 -1

Computation of To determine the numerator Y and denominator X of the compensator we need to
the compute

compensator)
[X Y]=[I U]M7=[I U]F},A

where for simplicity we choose U = 0. It is advantageous to implement this
computation as a right-to-left conversion

-1 -1
[I Ur,a"=2"x y]
so that the compensator transfer function is

K=Xly=xly=2
X

Again this may be coded straightforwardly:
% Conput ati on of the conpensator
xy = rnf2lnf([1 0] *Gam Lan;

x = xy(1,1), y =xy(1,2)

The output is

X =

2.4e+002 + 1.6e+002s + 50s”2 + s”3

63 + 1.8e+002s - 0.66s"2

Computation of The closed-loop characteristic polynomial is
the closed-loop

poles ¢o=dx+ny

We use it to test closed-loop stability and to compute the closed-loop poles.
% Conput ati on of the closed-Ioop characteristic polynonial
% and cl osed-1 oop pol es

phi = d*x+n*y;

Approaching
the optimal
solution

cl pol es root s(phi)

cl pol es
-46. 7980
-0.9727 + 0.6271i
-0.9727 - 0.6271i
-0.7071 + 0.7071i
-0.7071 - 0.7071i

It is easy to collect the command lines listed so far in an m-script and to run the
script repeatedly for different values of y.

We first run the script with gamma = 4. The closed-loop poles all have negative real
parts, and, hence, the closed-loop system is stable.

Next, we run the macro with ganmma = 3.5. The script returns
cl poles =
4.9995
-0.9590 + 0.5600i
-0.9590 - 0.5600i
-0.7071 + 0.7071i
-0.7071 - 0.7071i
The closed-loop system is unstable. Hence, gamma has been chosen too small.

Note that four of the five closed-loop poles do not change much with ganma. The fifth
pole is very sensitive to changes in gamra.

We test this dependence by running the script several times for different values of
gamma without showing the output. shows the results. Apparently as ganma
decreases the fifth pole crosses over from the left- to the right-half complex plane, but
does so through infinity.

Calculation of
the optimal
compensator

For the final run we take ganma = 3.9515, close to the optimal value but such that the
closed-loop system is stable. The corresponding numerator polynomial y and the
denominator polynomial x of the compensator are

y =
4e+003 + 1.1e+004s - 0.66s"2
X =
1. 5e+004 + 1e+004s + 3e+003s"2 + s”3

Table 1. Dependence of the fifth pole on ganma

ganma the fifth pole
4 —46.798

3.5 4.9995
3.75 11.369
3.875 30.297
3.9375 173.86
3.9688 —127.80
3.95 315.38
3.951 3153.8
3.9515 —2987.6

Inspection of the numerator and denominator polynomials y and x of the compensator
obtained for gamma = 3.9515 shows that their coefficients are large, except for the
leading coefficients.

In fact, we may cancel the leading coefficients and simplify y and x. This amounts to
cancelling the compensator pole-zero pair and eliminating the corresponding closed-
loop pole that pass through infinity as gamma passes through the optimal value.

Recalculation of the closed-loop poles after this cancellation confirms that the large
closed-loop pole has disappeared. These calculations are performed by typing a few
simple command lines

y{2} =0; x{3} =0;

y = y/Ix{2}, x = x/x{2}
y =

1.3 + 3.8s
X =

5.1 + 3.4s + s"2

phi = d*x+n*y;

cl pol es root s(phi)
cl poles =
-0.9703 + 0.6201i
-0.9703 - 0.6201i
-0.7075 + 0.7072i
-0.7075 - 0.7072i

Assessment of To assess the design we calculate and plot the sensitivity function S and the
the design complementary sensitivity function 7T of the closed-loop system. They are given by

= p_m
¢ ¢

We type in the command lines
onega = |l ogspace(-2,2); j = sqrt(-1);
S

bode(pol 2mat (d*x), pol 2rmat (phi), onega) ;
T

bode(pol 2mat (n*y), pol 2mat (phi), omega) ;

figure(l);

| ogl og(onega, abs(S), "' k'); hold on
| ogl og(onega, abs(T),"'b"); grid on
text(.1,.01,'S"), text(10,.01,'T")

shows the plots of S and T. For a discussion of the design and the mixed
sensitivity design methodology see Kwakernaak (1993).

Alternative As we have seen, the spectral factorization behaves poorly as the optimal solution is
spectral approached. The reason is that the factorization becomes “noncanonical” (Kwaker-
factorization naak, 1996). This difficulty may be remedied by using an alternative form for the

second polynomial spectral factorization. Instead of factoring
* *
A },A = F},JF},

Figure No_ 1 M= E3
Fle Edit ‘Window Help

Fig. 3. Magnitude plots of the sensitivity functions
we rearrange the factorization as
* _ -1
AJ,A=T,L"T,

L is diagonal in the form

L= diag(Ly,~Ly)

where L; and Ly are diagonal nonnegative-definite but not unit matrices. If the
factorization is close to noncanonical then L is close to nonsingular. The large
numbers disappear.

The alternative factorization is obtained by an option in the spf command. The
computation of the compensator is not affected, so we only need to change the code
line that contains the spf command to

[Gam J] = spf(DelDel,"'nnc');

Rerunning the script with this modification for gamma = 3.9515 shows that the large
numbers have disappeared. We also see that instead of the large closed-loop poles
and corresponding large pole and zero of the compensator we now have a closed-loop
pole, compensator pole and zero at —1:

Yy, X
y =

1.3 + 5.1s + 3.8s"2
X =

5.1 + 8.4s + 4.4s"2 + s”3
rootsx = roots(x), rootsy = roots(y), clpoles
rootsx =

-1.6787 + 1.5027i
-1.6787 - 1.5027i
-1. 0000
rootsy =
-1. 0000
-0.3476

clpoles =

-0.7071 + 0.7071i
-0.7071 - 0.7071i
-1.0002

-0.9715 + 0.6197i

-0.9715 - 0.6197i

Cancellation of the common root of y and x leads to the same optimal compensator
that was previously obtained:

x/ (s-rootsx(3)), y/(s-rootsy(1))
ans =

5.1 + 3.4s + s"2
ans =

1.3 + 3.8s

Automating the Now that the numerical instability in the computation of the compensator has been
removed it is simple to automate the search process. We implement a binary search
that involves the following steps:

search

1.

2.

5.
6.

Specify a minimal value gm n and a maximal value grmax for ganma.
Test if a stabilizing compensator is found at gama = gnex. If not then stop.
Test if a stabilizing compensator is found at gamma = gmi n. If yes then stop.

Let gamma = (gm n+gnmax)/2. If a stabilizing compensator is found then let gmax =
ganma, otherwise let gm n = gamma.

If gmax- gm n is greater than a prespecified accuracy then return to 4.

Retain the solution for gamra = gnax and stop.

This search algorithm has been implemented in the macro ni xeds. Calling the
routine in the form

gmn = 3.5; gmax = 4; accuracy = le-4;

[y, x,gopt] = mxeds(n, md,al, bl, a2, b2, gn n, gnax, accur acy, ' show)

executes the search while showing the intermediate results. The search stops if
gmax- gm n is less than the input parameter accur acy. This is the output:

ganma test result

4 stabl e

3.5 unst abl e

3.75 unstable
3.875 unstable
3.9375 unstabl e
3.96875 stabl e
3. 95313 stabl e
3.94531 unst abl e
3. 94922 unst abl e
3.95117 stabl e
3. 9502 unst abl e
3. 95068 unst abl e
3. 95093 stabl e
3.95081 stabl e
3. 95074 stabl e

Cancel root at -0.999999

y =
1.3 + 3.8s

5.1 + 3.4s + s"2

Cancelling
coinciding pole-
zero pairs

gopt =
3. 9507

The numerator x and the denominator y of the optimal compensator turn out to have
a common root. This often happens. The precise location of this spurious pole-zero
pair is unpredictable. It needs to be cancelled in the compensator transfer function
C=yl/x.

Rather than relying on one of the polynomial division routines we write a few
dedicated code lines. Suppose that the numerator y has a root z. Then by polynomial
division we have for the denominator x

x(s)=q(s)(s—2)+r

where the remainder r is a constant. By substituting s = z we see that actually r =
x(z). Expanding the polynomials x and g as

x(8) = x,8" + 2,18 L+ 4 xp, 4(8) = qp18" L+ g9 E + 4 qp
it follows that the quotient g and the remainder r may recursively be computed as

dn-1=Xn
Qp_1=%L+qpz, k=n,n-1--1
r=2Xxg+qp2
Note that this way of computing r = x(2) is nothing else than Horner's algorithm. If

the remainder r is small then we cancel the factor s—z. By the same algorithm the
factor s—z may be cancelled from the numerator y.

These are the necessary code lines. A tolerance t ol cncl 1is used to test if the
remainder is small.

% Cancel any common roots of xopt and yopt

rootsy = roots(yopt);

xo = xopt{:}; degxo = deg(xopt);
yo = yopt{:}; degyo = deg(yopt);
for i = 1:1ength(rootsy)

z = rootsy(i);

% Di vi de xo(s) by s-z
g = zeros(1, degxo);
g(degxo) = xo(degxo+l);
for j = degxo-1:-1:1
a(j) = xo(j +1) +z*q(j +1);
end
% I|f the remainder is snmall then cance
%the factor s-z both in xo and in yo
i f abs(xo(1)+z*q(1)) < tolcncl*norn(xo, 1)
X0 = (; degxo = degxo-1
p = zeros(1, degyo);
p(degyo) = yo(degyo+1);
for j = degyo-1:-1:1
p(j) = yo(j+1)+z*p(j+1);
end
yo = p; degyo = degyo-1
if show

di sp(sprintf('\nCancel root at %g\n',z));

end
end
end
The function The full command
mixeds
[y, X, gopt] = ..

m xeds(n, md, al, bl, a2, b2, gm n, gnax, accur acy, tol ,' show)

includes a four-dimensional optional tolerance parameter
tol = [tolcncl tolstable tolspf tollr]

which allows to fine tune the macro. For a description of the various tolerances
consult the manual page for ni xeds.

